
There is an African tribe with a very basic
number system. It is simple, elegant, and only
has three numbers: Ock, far and rup, which

stand for ‘one’, ‘two’ and ‘many’. Like them, we
have a variable to store one piece of information. If
we want to store two items, we need two variables.
But for an arbitrary number of items we need
something else. Perhaps an array. Perhaps a structure.
So we’ll look at both.

Array of light
There is no explicit data type for arrays. How could
there be? Every variable in ‘C’ must be given a pre-
determined type. How would we know if our array
stored ints, shorts, floats or doubles? Arrays are
therefore declared by appending square brackets to
the variable name (which does have a known type),
giving it a dimension. 

float fSwapVar; /* a ‘normal’ variable */

float fTemperateEachHour[24]; /* an array

*/

We can then use these variables, thus:

fSwapVar = fTemperateEachHour[8];

fTemperateEachHour[8] = fTemperateEachHour[20];

fTemperateEachHour[20] = fSwapVar;

Simple, eh? Now for the
drawbacks. The array cannot be
passed as parameters into
functions (I’ll spill the beans on
pointers that get around this in a

later issue!) and each element in the array
must be of the same type, as determined by the
syntax above. Also, it’s not possible to change the
type or size of an array: fTemperateEachHour will
always hold 24 floating point numbers. Now, next

week, until the end of
time and the day after.

C: Part 3

LANGUAGE
OF THE ‘C’

PROGRAMMING

64 LINUX MAGAZINE Issue 16 • 2002

In this, the third part

of our C language

tutorials, Steve

Goodwin looks at

more complex data

types, extending our

temperature

conversion idea

On a boundary
Each element in the array can be referenced with a
unique index. The index is an expression (a constant
number or variable) which sequentially references
each element in order, from zero to the number of
elements-less one. In our example, that is zero to 23,
inclusive. The last entry is 23, and the first is zero.
Not one. Zero. Never one. Zero. Got that? Good!

When I said ‘can’ refer to, it would be better to say
‘should’. There is no bounds checking in C. That is,
the compiler never validates the array index to make
sure it lies within the legal range. This makes it
possible to write data to (and read from)
fTemperateEachHour[24], fTemperateEachHour[-1], or
fTemperateEachHour[7456925].

This is not an error but a design
feature of the language,
since the lack of bounds
checking promotes fast
execution times. This
can cause bugs, which
are caught at run-
time when we try to
read or write elements
in an array that do not
exist (see Memory
access). The problems
originate from the fact that
although fTemperateEachHour[24]
does not exist, it is unlikely to cause a segmentation
fault, since it’s probably the memory location of
another variable.

The size of the array must be declared as a
constant, integral, number – variables are not
permitted in ANSI C (C99 does, as do some
compilers, but as non-standard extensions).

int iMaxHoursInAYear = 366*24;

float fTemperatureEachHourForAYear[366*24]; /*

OK – size is constant */

float



PROGRAMMING

65LINUX MAGAZINEIssue 16 • 2002

Table 1

fTemperatureEachHourForAYear[iMaxHoursInAYear];

/* Bad – size is not constant */

Arrays can be of any dimension. We’ve already seen a
1D array, with one set of brackets. Now let’s briefly
see a 2D array, with two sets of brackets:

float

fTemperatureEachHourThroughoutAYear[366][24];

fTemperatureEachHourThroughoutAYear[0][23] =

4.5f; /* Jan 1: 11 pm*/

fTemperatureEachHourThroughoutAYear[365][0] =

4.7f; /* Dec 31 (or 30!) at midnight */

It is theoretically possible to create a ten-dimensional
array but no one outside the asylum has done so!

In the beginning?
Arrays, like variables, can be initialised when they are
declared, but as they contain multiple values, you
must initialise all of them – or none of them – using a
comma separated list, enclosed between braces. Each
value must be a constant, although some compilers
permit variables to be used.

float fTemperateEachHour[24] = {

20, 18, 17, 16, 15, 17, 18, 19, 20, 21, 22, 23, 

24, 25, 26, 27, 28, 29, 27, 26, 25, 24, 23, 22,

};

There is one deliberate non-mistake above! The
comma after the last number – it ‘can’ be there! It
doesn’t have to be, but it can. This feature was
incorporated into the language to make it easier to
write tools that output C source code, as they can
blindly add a comma after ‘all’ numbers. The practise
is also recommended for human programmers to
ease maintenance!

Automatic for the people
If you are willing to type in the initial values for an
array (as opposed to reading them from a file, as
we’ll examine in a later issue), then C supports
another feature to help you: it will automatically
count the elements, and declare an array of the
correct size. The following are therefore equivalent:

int iList[5] = { 1,2,3,4,5, };

int iAutoList[] = { 1,2,3,4,5, };

Naturally, you can only omit the size if you include

How we declare the struct How we declare the variable

Example 1
struct { (we’ve already declared one –

float fMultiplier; Centigrade2Fahrenheit – however

float fAddition; the structure has no name so we cannot

} Centigrade2Fahrenheit; create another variable with the same

type without re-declaring the whole structure)

Example 2
struct sConversion { struct sConversion

float fMultiplier; Centigrade2Fahrenheit;

float fAddition; (when declaring ‘sConversion’, we must

}; precede it with the keyword ‘struct’)

Example 3
typedef struct sConversion { Conversion Centigrade2Fahrenheit;

float fMultiplier; (by telling the compiler we wish to 

float fAddition; define a type, it doesn’t need to be 

} Conversion; told Conversion is a structure explicitly,

as in Example 2, as this name is now in

the compiler’s symbol table*)

struct sConversion

Centigrade2Fahrenheit;

(an alternative based Example 2)



data (otherwise, how is the compiler to know how
much space it needs?). When reading from such an
array, the data must either describe itself, or you’ll
need to know its size.

iSizeOfWholeArray = sizeof(iAutoList);

iSizeOfEachElement = sizeof(iAutoList[0]);

iNumOfElements = iSizeOfWholeArray /

iSizeOfEachElement;

for(i=0;i<iNumOfElements;i++)

{

printf(“element %d is %d\n”, i,

iAutoList[i]);

}

This also demonstrates the convention of a loop
counter; using the low bound inclusive, and the
upper bound exclusive. It stops gatepost, or off-by-
one errors, and is encouraged.

Architecture and morality
Abstract Data Types (ADTs) include a number of
differently named elements (which can be of different
types) encapsulated within a single logical block. For
example, a payroll package might group ‘name’,
‘date of birth’ and ‘employee number’ into an
‘employee’ structure. Although C doesn’t hide the
elements of the structures, it is good practise to keep
their handling functions together in the source.

There are three basic methods for declaring
structures. See table 1 on previous page:

Each structure consists of normal variable
declarations. You may include as many as you like
here (within reason), and you may nest other
structures inside this as deep you like (again, within
reason).

C’s rule of ‘declare-before-use’ permeates
everything, including structures. You must have
declared the structure before you can create variables
with it – if its name’s not down (in the symbol table)
it’s not getting (compiled) in – and the compiler
stops!

The name of each structure element (fAddition, for
instance) only exists during compilation. It is not
included in the executable (except as debugging
information). Sorry, but I didn’t write the language!

Technically speaking, new types cannot be created.
Instead, the compiler simply creates a new name
for an existing type. In this case – a structure.

Don’t stop the rock
Structure elements are accessed with the ‘.’ (dot)

notation, regardless of how it has been created.
As with arrays, a variable inside a structure
is like referring to one anywhere else.

Centigrade2Fahrenheit.fMultiplier =

9.0f/5.0f;

Centigrade2Fahrenheit.fAddition = 32;

fFahrenheit = (fCentigrade *

Centigrade2Fahrenheit.fMultiplier) +

Centigrade2Fahrenheit.fAddition;

As with arrays, this could be initialised with:

Conversion Centigrade2Fahrenheit = {

9.0f/5.0f,

32,

};

Naturally, each element in the structure is set up with
its corresponding element in the list. As with arrays,
you must provide data for each element in the
structure, or none at all. The compiler will not guess
on your behalf.

Happy together
C is a very simple
language: it has very
few rules and even
fewer instructions,
making it almost trivial
to combine different
types. So an array of
structures would be:

struct {

float fMultiplier;

float fAddition;

} ConversionList[3] = {

{ 5.0f/9.0f, (-32*5)/9.0f, }, /*

fahrenheit to Centigrade */

{ 9.0f/5.0f, 32.0f, }, /*

Centigrade to fahrenheit */

{ 1.0f, 273.15f, }, /*

Centigrade to kelvin*/

};

From here, we could declare an array of
temperatures, and convert them from Centigrade
into Fahrenheit and Kelvin. In the best traditions of
technical papers – “this is left as an exercise for the
reader”!

Sonata for flute 
and strings in C# minor
The biggest drawback with types in C (especially in
the sysadmin field) is the lack of support for built-in
strings. Or rather, a built-in string type, because
strings do exist in C.

Their implementation comes in two parts – data
and processing. The data is stored as an array of
characters, which, in addition to the usual array
methods, can be manipulated with functions in libc.
Let’s start with the storage.

PROGRAMMING

66 LINUX MAGAZINE Issue 16 • 2002



Hold the line
We’ve spotted the char datatype before, without ever
really looking at it. That’s because I’ve been saving it
for somewhere special. Namely, here. A char
(pronounced char – as in lady, or car – as in
automobile) can hold a letter from the standard ASCII
character set, from 0 to 127. A char can be either
signed or unsigned and so it is not portable to use
extended ASCII characters from 128 onwards. So, if a
char can hold one letter, an array of chars can hold a
word, a whole sentence, or, providing the array was
big enough, a whole book!

There is no difference between an array used to
hold a string, and one holding data of another
persuasion. It still has (unchecked) bounds, its
contents cannot be passed to functions as a
parameter, and each value is stored in the array
sequentially from the first element. However, as a
special requirement, strings always end with zero.
This is called the null terminator (written as either 0
or \0), and tells the string functions where to stop
processing. For you, this means your array must be
large enough for the string and the null terminator.

Index 0 1 2 3 4 5 6 7
Value ‘s’ ‘t’ ‘r’ ‘i’ ‘n’ ‘g’ 0 unknown

We can manually create a string using the array
initialisation code we’ve already learnt:

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 char MyString[] = { ‘s’, ‘t’, ‘r’, ‘i’, ‘n’,

‘g’, ‘\0’};

6

7 printf(“str=%s”, MyString);

8 return 0;

9 }

However, there is another way, and we’ve been using
it for the last three months! Notice whenever we
print a string to the screen (like “str=%s” above), we
use double quotes (“). That isn’t just a convention,
that’s a requirement! The double quote is shorthand
telling the compiler to build an array of characters,
and automatically add a null terminator to the end.
This creates a string which printf can take and
process as normal.

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 char MyString[] = “string”;

6

7 printf(“str=%s”, MyString);

8 return 0;

9 }

Sometimes, you will see this listing written with:

5 char *MyString = “string”;

This is not identical. There is one
incredibly subtle difference. Here, the
string data (“string”) is created as part
of the code in exactly the same way
that “str=%s” is in line 7. And because
it’s part of the code – it isn’t part of the
data. So,

MyString[4] = ‘d’;

will core dump as it tries to modify the code, where it
wouldn’t, in the first two listings. Obviously, it is
perfectly valid to use it as a read only string.

The string library
Manipulating strings in C is a time consuming and
thankless job. Every time you want to join, format,
split or change a string you must make sure all the
arrays you are using are big enough for the largest
string you need (because there’s no bounds checking,
and no simple way of growing an array once
created). So how do you know what the largest text
string is? You don’t! Ever! Strings can be overwritten
so easily it isn’t even funny any more. The buffer
overruns you might have read about in security
bulletins happen for this reason. It is a very weak area
of C programming.

Being a library, you need to include the header file
describing the functions, and a library to link in the
code. Well, the string library is part of libc, and the
header file is just:

1 #include <string.h>

The library provided for string manipulation is good
enough for production work, but requires effort on
your part to stop the overruns (which is why most
programmers have their own string library). For the
purposes of our examples, all arrays here are 80
characters, and we’ll assume that no string will be
exceed that, so we can concentrate on the
functionality.

We built this city
There are four main functions for constructing
strings. In all cases, the strings given can be variables
or double quoted constants, and the first string is the
destination (or target) that gets written into, whilst
the second (the source) is read from, and left
untouched in all cases (i.e. it remains constant).

PROGRAMMING

67LINUX MAGAZINEIssue 16 • 2002



PROGRAMMING

68 LINUX MAGAZINE Issue 16 • 2002

strcpy(szMyName, “Steven”);

strncpy(szMySurname, “Goodwin”, 79);

strcat(szMyName, “ “);

strcat(szMyName, szMySurname);

sprintf(szInfo, “Todays average

temperature was %f\n”, iAverage);

The strcpy is probably the most widely used. It copies
string data from the source to the destination. It does
not know how big the destination buffer is, and will
continue copying until it finds a null terminator in the
source, which is the last character it will write.

strncpy is the function that should be the most
widely used! It works the same as strcpy, but will
copy – at most – 79 characters (in this example) to
stop you overrunning string bounds. However, it only
adds the null terminator if the source string is less
than 79 characters. This can cause problems if you
then try to read from the string (since it never
terminates, C does it’s little trick of trampling over
memory). It is recommended you manually terminate
such strings:

strncpy(szMySurname, “Goodwin”, 79);

szMySurname[79] = ‘\0’; /* Single

quotes indicating a character literal */

The second line treats the string like the normal array
it is. This means we can mimic the LEFT$ function of
BASIC (which takes the N left-most characters), for
example, by writing:

szMySurname[4] = ‘\0’;

strcat performs concatenation: it searches for the end
of the target string, and bolts the source to the end.
Again, no bounds checking is done (observe the lack
of numeric parameter). Notice the first strcat example
we place double quotes around the space. Although
a space can be denoted with the character constant ‘
‘, we are actually dealing with strings. And strings
must have a null terminator, so we place the space

inside quotes to produce a char array, as
opposed to a char.

sprintf is a fun one. It acts like the
‘printf’ we’ve seen throughout this
series. Although instead of writing
the text to the screen, it writes it
into a buffer. It’s great for
formatting output, and converting
integer values into text strings.

Too much information
The two oft-used functions for

learning about our strings are:

iLengthOfString = strlen(szMyName);

if (strcmp(szMyName, “Susan”) != 0)

printf(“My name is not Susan!”);

Quite simple, these ones! strlen calculates the
number of characters in the string (excluding the
null), while strcmp does a case sensitive comparison
between two strings, returning zero if they are the
same. It does more than a direct comparison, though.
If the first string is ‘less than’ (i.e. first in the
alphabet), the return value is -1, if it is greater (i.e.
later), it returns 1. Although both equate to true (i.e.
non-zero), it is better to explicitly write ‘!=0’ to
remind you of the other possibilities. There is also a
case insensitive comparison with the function stricmp.
Additionally, to find out if the first 3
characters are the same, there’s
strncmp, another ‘n’ function,
which takes an extra third
parameter indicating the number
of character to check.

There are a number of other
string functions not covered here,
with interesting names like strchr, strtok
and strstr. They can be found in /usr/ include/ string.h,
and will be understood after our lesson on pointers,
which, since I can see the bottom of the page
approaching, will have to wait until next month!

Memory access
When your program is running (usually in user
space) it has access to some memory. When Linux
loads your program, your variables (the program’s
data segment) are placed into an area of memory,
which has read/write access. The code of your
program is also placed into memory – but this
memory can only be read. If you try writing data
into this code memory you will cause a
segmentation fault, or core dump. If you try
reading from, or writing to, memory owned by
neither code nor data, it will core dump. 

With the code we’ve seen so far, arrays are the
only thing that can write information outside the
data memory that we’ve been given to work in,
and that’s what causes the problem with
fTemperateEachHour[7456925]. If you happen to
own this memory location too, however, the
program will change whatever data is there.
However, since this is usually an unrelated variable,
the program will have completely unpredictable
results, which is obviously a bad thing.


