
Electric Counterpoint
So what can pointers do, and why are they so useful?
Well, pointers (as the name suggests) point to a
location in memory that holds information we are
interested in. In keeping with the themes of this
series, that information is a temperature!
Used appropriately they can help keep
the code clean and save processing
time, since we pass pointers to data
into functions, instead of the data
itself.

It might be obvious, but I shall state
it for the record - pointers have to point
to something. This must be our own valid
data (in our own data segment, see last months
Memory access boxout) or we will core dump. If the
pointer has no valid data to point to it should be set
to zero. This is termed a NULL pointer.

Pointers, like structures, arrays before them, and
variables before them, can not be changed once
created! An integer pointer will always point to
integers, but it can point to a number of different

C: Part 4

LANGUAGE
OF THE ‘C’

PROGRAMMING

66 LINUX MAGAZINE Issue 17 • 2002

Of all the elements

in ‘C’ programming,

pointers are known

to cause the most

problems. They

needn’t. In this

article, I’ll show

you why.

integers during its lifetime. Although there is nothing
to stop you pointing it at floating point numbers, you
can only read that data from memory as integers -
which produces strange looking numbers!

Let’s start with some simple examples:
*(listing 1)

Line 5 declares a pointer to an integer. It
doesn’t declare the integer itself, just a

pointer to one. It could be referencing anything, from
anywhere, because (like all local variables) ‘C’ does

not automatically initialise them to
sensible values. This is called a ‘dangling’

pointer. If we try to use pNum1 without
pointing it to something we are very likely to

core dump (in fact, you would be incredibly lucky not
to core dump!). Line 10 (explained later) shows how
we point it to something.

Line 6 contains two pointer declarations. Note that
each variable needs the ‘*’ prefix, if it is to become a
pointer. Omitting this is a common newbie mistake,
although the compiler is good enough to point this
out to us if we try to use a normal int as an int
pointer! Wherever a variable type (like int) is valid - a
return type or function parameter - a pointer to a
type is also valid.

We see the initialisation of a NULL pointer in line 7.
This is the safest way to declare a pointer as we can
check its validity with:

if (pAListOfLongs)

{

/* this pointer is valid */

}

However, should we forget to check the NULL
pointer, we can guarantee a core dump when its
contents are studied!

Line 10 is more interesting. This points ‘pNum1’ to
somewhere valid - in this case, the address of the
integer variable declared at line 8, iValue. The
ampersand can be used in front of any variable name
type (regardless of its type) to produce the address in

Listing 1
1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 int *pMyList;

6 int *pNum1, *pNum2;

7 long *pAListOfLongs = NULL;

8 int iValue = 4;

9

10 pNum1 = &iValue;

11 printf(“Value at the pNum1 ptr is %d\n”, *pNum1);

12 *pNum1 = 3;

13 printf(“Value at the pNum1 ptr is %d\n”, *pNum1);

14 printf(“iValue is now %d\n”, iValue);

15 return 0;

16 }

PROGRAMMING

67LINUX MAGAZINEIssue 17 • 2002

memory of that variable. And because the variable
has the number four, our pointer also points to the
number four.

To read the information from the pointer we have
to dereference it. This is done by prefixing the
pointer’s name with an ‘*’, as in lines 11 & 13. We
can also use this syntax to write information back
into that memory location, as with line 12:

12 *pNum1 = 3;

You will notice that because pNum1 and iValue both
reference the same memory location (and not just
the same value) changing the data of either one,
affects the other; which is why line 14 will report
iValue to being 3 despite the fact we never change
it explicitly.

Anticoh Arrow
In addition to dereferencing basic variable types (like
int, long and float), we can do exactly the same thing
with structures. You probably wouldn’t be surprised
by the code?

float Convert(float fValue, struct sConversion

*pConv)

{

return (fValue * *pConv.fMultiplier) +

*pConv.fAddition;

}

We dereference ‘pConv’ with ‘*’, making the type
of ‘*pConv’ a structure; and since structures use ‘.’
to retrieve individual elements, we write
‘*pConv.fMultiplier’. It’s not really that strange. (You
must remember to put a space between the two
‘*’s, otherwise ‘C’ will try and understand the
symbol ‘**’ - which it can’t - and complain heartily!)
At this point, the bright kid at the back of the class
raises his hand, “Isn’t there a neater way, sir?” Well,
yes. There is.

Because this type of operation is very common, we
have a special symbol that combines the ‘*’ and the
‘.’ into one. For the lazy typists amongst you, I’m
afraid it still has two characters, but it does look like
a spaceship - making it infinitely cooler! That symbol
is ‘->’, and is called the ‘pointer to’ operator. It can
be used directly in place of ‘*’ and ‘.’, turning the
above function into:

float Convert(float fValue, struct sConversion

*pConv)

{

return (fValue * pConv->fMultiplier) +

pConv->fAddition;

}

As well as passing data in, it is possible to pass a

structure out of a function using a pointer. It’s much
better than returning all the data on the stack (which
requires copying memory) and allows the function to
write its results directly into the structure.

Your Latest Trick
Pointers can be kept simple by making sure the left
and right hand sides of each expression have
matching types. So, if the variable on the left hand
side is a ‘float *’, make sure the right hand side is
one too (either another ‘float *’, or the address of a
float variable). Be careful though, once you have a

Incrementation
When an expression like,
*pTempList++ is evaluated there is the
question of ‘when exactly does the
pTempList variable get incremented’?

The actual answer varies for every
compiler you might use! All the ‘C’
standard expects is that the
incrementation will occur at some
point before the next sequence point
(the ‘;’). But it does not specify when.
Usually, this isn’t a problem. But if your
code changes the same variable twice
before the next sequence point - it is!

iResult = iValue++ * iValue++;U

/* Very bad code ! */

Only the compiler know if this is
treated as:

Get iValue1

Increment iValue

Get iValue2

Increment iValue

Add them

Multiply

Assign to iResult

(sequence point here)

or
Get iValue1

Get iValue2

Add them

Multiply

Increment iValue

Increment iValue

Assign to iResult

(sequence point here)

Only the compiler knows what it’s
going to do - and you are not the
compiler, so you shouldn’t be writing

the code like that!
The same ambiguity is true for the

expression:

iValue = iValue++;U

/* also, very bad code! */

‘ iValue++’ evaluates to whatever value
‘ iValue’ is (post-increment, remember),
this is remembered (usually in a
register, or on the stack), and used
later when it comes to performing the
assignment ‘ iValue =?’. Using the
above notation:

Get iValueRHS

Store iValue in iStackTemp

Increment iValue

Assign iStackTemp to iValueLHS

(sequence point here)

or

Get iValueRHS

Store iValue in iStackTemp

Assign iStackTemp to iValueLHS

Increment iValue

(sequence point here)

The first version leaves iValue
unchanged, whilst the second version
would increment it. Naturally, this is
very ungood, and is not encouraged!

(*pTempList)++

This creation will cause the compiler to
dereference pTempList, and increment
the value - at that memory location.
This saves copying data from memory,
incrementing, and copying it back.

pointer, don’t take the address of it!

pNum1 = &iValue; /* Good! */

pNum2 = pNum1; /* Good! */

pNum2 = &pNum1; /* Bad! pNum1 is U

already a pointer! */

pNum2 = pAListOfLongs; /* Bad! We have a intU

* on the left, and U

long * on the right */

Angels vs Animals
(or Pointers vs Arrays)
Before we move on, there’s one more assignment we
should cover. Arrays. Like other variables, they exist in
memory, so we should be able to assign a pointer to
point to them. The question, is how? The answer, is
simple!

float fTemperateEachHour[24];

float *pTempList;

pTempList = &fTemperateEachHour[0];

pTempList = fTemperateEachHour;

Both examples produce the same result, but the
second uses a synonym (or syntactic sugar!) within
the language. The array name is (by design) the
location in memory where the array data was
created; making it similar to a pointer. And, because
the array name is treated as a single variable, it can
be passed into functions like we saw (but didn’t
explain) last month with strings. However, the
differences between an array and pointer are many
(see the comp.lang.c FAQ), but primarily, a pointer
can point to any chunk of memory (valid or not) but
does not allocate that memory. The array, on the
other hand, will allocate some memory, but can only
point to it - nowhere else.

Working In A Coalmine
Now we have a pointer, we need to do something
with it. We know how to handle data in the memory
it points to, and we know how to initialise it, but so
far we haven’t worked out how to modify the
pointer. Since a pointer is like any other variable we
can re-assign it, or use one of the arithmetic
operators (like ‘+’ or ‘—’). This is both legal and
useful. However, multiplication of pointers doesn’t
make any sense (nor does division). So stick to the
sensible ones; ‘+’, ‘-’, ‘++’, ‘-’, ‘+=’ and ‘-=’.

Assuming we have an array of hourly temperatures
in ‘fTemperateEachHour’, and ‘pTempList’ points to
the first one, we can reference the second
temperature easily because the array is always
sequential. There are several ways of doing this:

t = pTempList[1]

We act like it’s an array. Valid, but is not good
practise because it implies an array - which it isn’t.

t = *(pTempList+1)

Directly equivalent to the method above. Here we
treat the pointer like a variable, adding ‘1’ to it. This
will move on one element. (If we point to floats, one
element is the size of one floating point number, so
we never need to know the size of each element in
bytes). The data is then dereferenced from memory
with the usual ‘*’ notation.

++pTempList;

t = *pTempList;

After then first instruction pTempList points to the
second array element, which we can dereference
with a single ‘*’.

t = *(++pTempList);

Exactly the same as above. We’ve just joined both
lines into one, using brackets to ensure the correct
evaluation order.

The most usual way to read a block of data using
pointers is with a variation of the last example.

for(i=0;i<24;i++)

printf(“Temp at index %d is %f\n”,U

i, *pTempList++);

(I hope we are all comfortable dropping the braces
when there’s only one statement, since this is more
usual)

So what happens in ‘*pTempList++’? Well, it is the
same as *(pTempList++), as opposed to
(*pTempList)++ (see BOXOUT: (*pTempList)++). The
post-increment part (pTempList++) evaluates to the

PROGRAMMING

68 LINUX MAGAZINE Issue 17 • 2002

Listing 2
1 #include <stdio.h>

2 #include <string.h>

3

4 int main(int argc, char *argv[])

5 {

6 char szFullname[] = “Sandra Bullock”;

7 char * pSurname;

8

9 pSurname = strchr(szFullname, ‘ ‘);

10 if (pSurname) /* person may not have a surname! */

11 {

12 pSurname++; /* skip the space */

13 strcpy(pSurname, “Goodwin”);

14 }

15 printf(“Full name is now %s\n”, szFullname);

16

17 return 0;

18 }

value of ‘pTempList’ before the variable is
incremented. This value is then dereferenced by the
‘*’ operator. It occurs in this order because of
precedence. But that is a more complex topic, so will
be dealt with in later issues. Also see BOXOUT:
Incrementation.

After completion, pTempList has been incremented
beyond the end of valid data. To run the loop again,
we must rewind the pointer with:

pTempList = &fTemperateEachHour[0];

You have now learnt enough to re-write all the string
functions we saw last month, and understand all the
others! The strcpy function, for example, might be:

void MyStringCopy(char *pStringDest, U

char *pStringSrc)

{

while(*pStringSrc) /* until we reach U

the NULL terminator */

*pStringDest++ = *pStringSrc++;

pStringDest = ‘\0’; / add a new NULL U

terminator */

}

Sonata Number 2 for Flute and
Strings in C# Minor
In part three, I briefly remarked about writing the
BASIC instruction LEFT$ with one simple line of ‘C’. It
would have been possible to produce versions of
MID$ and RIGHT$ fairly easily. It would have also
been a waste of time! Why? Strings are rarely
manipulated in that manner because we have more
powerful methods at our disposal, notably pointers.
Your gateway to this fountain of proverbial
knowledge is:

1. A string is a pointer to NULL terminated data.
2. A pointer to a character within a string is still a
string, because of 1.

Well, that’s it explained in zen-style language. What
about in the ‘C’ language?!

char szFullname[] = “Sandra Bullock”;

char *pSurname = &szFullname[7];

Our new string (pSurname) can be treated like any
another (since if szFullname ends in NULL, so must
pSurname), meaning we can use all the normal string
functions, like strcpy, on it.

strcpy(pSurname, “Goodwin”); /* for when

Sandra decides to marry me! */

printf(szFullname);

We must be very careful when building strings in
this manner. If our original string doesn’t have
enough space for the new surname, we’ll overrun
the szFullname buffer, causing the overrun
problems mentioned last month. However, it
doesn’t matter if we underrun. Most people will
declaring strings with 128 or 256 characters in
them, knowing that any string manipulation will
not be so large as to overrun. It is very dangerous

PROGRAMMING

69LINUX MAGAZINEIssue 17 • 2002

Listing 3
1 #include <stdio.h>

2

3 void ConvertToFahrenheit(int iNumElements, float *pTemperatures)

4 {

5 float fFahrenheit, fCelsius;

6 int i;

7

8 for(i=0;i<iNumElements;i++)

9 {

10 fCelsius = *pTemperatures;

11 fFahrenheit = fCelsius*(9.0f/5.0f) + 32.0f;

12 *pTemperatures++ = fFahrenheit;

13 }

14}

15

16 int main(int argc, char *argv[])

17 {

18 float fTempList[] = {

19 20, 18, 17, 16, 15, 17, 18, 19, 20, 21, 22, 23,

20 24, 25, 26, 27, 28, 29, 27, 26, 25, 24, 23, 22,

21 };

22 int iNumHours = sizeof(fTempList)/sizeof(fTempList[0]);

23 int i;

24

25 ConvertToFahrenheit(iNumHours, &fTempList[0]);

26 for(i=0;i<iNumHours;i++)

27 printf(“Element %d is %f\n”, i, fTempList[i]);

28

29 return 0;

30 }

Most of these examples use floating point
numbers because we’d like decimal places in our
temperatures. Unfortunately, floating point
numbers are inaccurate since it is not possible to
represent every value exactly with them. This
means you will see some strange numbers in
places, for example 9/5 is 1.8. But 32+1.8 is not
33.8, but 33.799999 because the processor can
not represent 33.8. For this reason it is (very) rare
to compare floating point numbers directly with
‘==’, rather it is better to say ‘if two numbers are
within 0.0001 of each other, they are the same’.
This small value is called the epsilon.

PROGRAMMING

70 LINUX MAGAZINE Issue 17 • 2002

assumption, and only acceptable in casual, non-
critical, code.

One of the functions mentioned last month is
strchr. This function searches a string for a particular
character (a single, literal, character, that is) and
returns a pointer to the first occurrence. If no
character could be found, it returns a NULL pointer.
We could use this function to generalise our above
code, thus see listing 2.

Pass The Dutchie
Pointers are often used as parameters to functions.
This lets us modularise our data and algorithms, since
we can say ‘do your processing, with our data’. And,
as mentioned before, by supplying pointers to data,
we don’t need to waste time making a special copy
of the data see listing 3.

We have seen all of this code before, in some form
or another. We have seen dereferenced pointers (lines
10 & 12), the incrementing pointer (12), the
automatic array size (18-21), and the size of
operator (22).

You should be able to say why we don’t increment
the pointer in line 10. You should also be able to say
how we could enhance this example so we don’t
loose the original ‘temperature in Celsius’ data.

Finally a word of warning. If you intend to pass a
pointer back from a function (and there are several
reasons why you’d want to) then make sure the data
it points to will still exist when the function exits.
Local variables will not! They are created on the
stack, and will leave your calling routine with a
dangling pointer, looking at an invalid area of
memory.

Take A Bow
When you call a function, the processors program
counter is set to the memory location of the function.
Simple. But why should the compiler be limited to
such operations? What if we (as the programmer)
knew the address in memory of a function - what
stops us from using it to call that function? In ‘C’ -
nothing!

We can declare such a variable by taking the
function prototype,

void PrintMessage(void);

and replacing the function name like so:

void (*pFunction)(void);

The declaration enforces the only limitation with
pointers to functions. That is, the variable can only
point to functions with exactly the same prototype.
To ease readability, this could also be typedefed as in
listing 4.

When a function name is used as part of an
expression (as in lines 21 and 24), a function pointer
is generated, and can be stored in a variable (as it is
here), or passed to another function for processing. A
call to that function is made by dereferencing it, (line
29). This is how a number of fractal generators are
written: there is a common ‘for all pixels in image’
loop which calls (with a pointer to function) the
program code for a particular fractal. This prevents
duplicating the ‘for all pixels in image’ code, and
allows new modules to be added easily to the
program. Providing a new fractal type requires,
perhaps, four lines of code!

Listing 4
1 #include <stdio.h>

2

3 void ToFahrenheit(float fTemp)

4 {

5 printf(“%f c => %f f\n”, fTemp, fTemp*(9.0f/5.0f)+32.0f);

6 }

7

8 void ToKelvin(float fTemp)

9 {

10 printf(“%f c => %f K\n”, fTemp, fTemp+273.15f);

11 }

12

13 void ConvertTemperatureRange(int iWhichFn)

14 {

15 void (*pFunction)(float);

16 float fTemp;

17

18 switch(iWhichFn)

19 {

20 case 0:

21 pFunction = ToFahrenheit;

22 break;

23 case 1:

24 pFunction = ToKelvin;

25 break;

26 }

27

28 for(fTemp=-100;fTemp<=100;fTemp+=10)

29 (*pFunction)(fTemp);

30 }

31

32 int main(int argc, char *argv[])

33 {

34 ConvertTemperatureRange(0);

35 ConvertTemperatureRange(1);

36 return 0;

37 }

Next month?IO: how to handle files, the
keyboard and the screen.

