
There was a lecturer who taught Pascal
programming to a group of first year students.
He taught the course in a very rigid and

structured manner: in the first week, he taught
everything about Pascal beginning with the letter ‘A’.
The second week’s lecture was brought to the
students by the letter ‘B’, week three, ‘C’ and so on.
It certainly split the course up nicely and provided
a good aide memoire for the
students, however it took 16
weeks before they could print
anything to the screen. I
hope I haven’t followed in
his footsteps!

Get outta my
dreams
The most common means
of printing text is with the
printf function. We’ve seen this
function many times before, and
you’ve probably deduced how it works. If not, see
Listing 1.

printf consists of a text string to print and
(optionally) any number of additional parameters

C: Part 5

LANGUAGE
OF THE ‘C’

PROGRAMMING

56 LINUX MAGAZINE Issue 18 • 2002

In part 5 of our C

tutorial Steve

Goodwin adds

control and finesse

to our printing as

well as looking at

keyboard input

holding data. The string may consist of text, and/or
“format specifiers”. These may appear anywhere
within the string, but always begin with a % symbol,
and are followed by one or more characters. When
displayed on the screen each format specifier will be
replaced from inside the printf function with the next
available parameter (the string itself, however,

remains unchanged). The manner in which it is
replaced is determined by the specifier itself: a
%d means print the argument as a decimal

integer, for example. It is imperative that the
variable type given matches the specifier in the

string, or it will print garbage on the screen. Also,
you must make sure the number of format specifiers
equals the number of extra arguments, or you will

get similar-looking garbage.
The more common format specifiers

are shown in Table 1.
Although it’s acceptable to print single

characters using an integer variable it can be
quite problematic. This is because not all integers

will result in printable characters (see the Weak types
boxout).

But that’s only chapter one! C supports some
groovy additions that enable you to control the
number of significant digits presented, as well as the
layout.

Numbers
If the first character after the % is a number, this
means the printf will display at least this number of
characters – be they digits, letters or padding. It may
print more, but never less. This is called the “field
width”. Its antithesis is the precision value (any
number which follows a dot, “.”). This indicates the
maximum number of characters it can print. In the
case of numbers it refers to the digits after the
decimal point. With letters, it means the number of
characters in general. Either, or both, of these
numbers may be omitted. For those hungry for
examples, your dessert is Listing 2!

Listing 1
1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 int iItemCount = 24;

6 float fAverageTemperature = 42.5f;

7

8 printf(“There are %d items, the U

average temperature was %f \n”, iItemCount, U

fAverageTemperature);

9 return 0;

10 }

PROGRAMMING

57LINUX MAGAZINEIssue 18 • 2002

Table 1

Single girl
In addition to the printf function, there are two other
oft-used functions that we will briefly mention; puts
and putchar.

puts writes a single string (automatically adding a
new line) to the output. It doesn’t do any format
conversions, however, which makes it slightly faster.

puts(“Another way of writing ‘Hello, World!’”);

And putchar, which outputs a single character:

putchar(‘X’); /* Note the single quotes */

All output takes place on stdout. This is the standard
output, and is usually the screen. However, if the
program’s output has been redirected (with > or >>)
or is piped into another program (using |) the shell
will automatically take this output and pass it onto
the appropriate parties. Don’t try to be clever by
looking to see if the error stream has been redirected
into a file, and appending text to that file directly – it
won’t work! However, for ease of description, I shall
refer to the screen as your standard output device.

These three functions will output text to the
screen. However, when this information will be
written is not guaranteed. The screen, like everything
in Linux, is a file and by default a “buffered” stream:
all text sent to printf, puts and putchar is not sent to
the screen when you call the function, but is sent
sometime later. This could occur when:

1 Its memory (aka the buffer), is full.
2 A specific character, say a carriage return, is

outputted.
3 When some input is required. It would be silly for

the prompt to be sitting in the buffer, when the
user is expected to be entering data.

4 The stream is closed. (Something that makes more
sense with files than with the screen.)

5 It is explicitly requested by the C program.

Since 5 is the only one we can control (without
changing the operation of our program), it is the
only one we will discuss. If your program performs a
lot of processing, but only minimal output (say a
prime number calculator) then you’d want to output
each digit as soon as the program has made it
available. To do this, we have to “flush” the output
buffer to the screen.

Format What it outputs Suggested types

%d Decimal integer (signed) int, short
%ld Long decimal integer (signed) long
%u Decimal integer (unsigned) int, short
%lu Long decimal integer (unsigned) long
%o Octal integer (unsigned) int, short, long
%x Hexadecimal integer int, short, long
%f Floating point number float, double
%c Single character char, int
%s NULL terminated string char *

Note: In order to print a % sign, we must use the string %%. No arguments
are needed.

Listing 2
1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 printf(“a – ‘%2d’\n”, 5);

6 printf(“b – ‘%3.1f’\n”, 7.53f);

7 printf(“c – ‘%.2f’\n”, U

3.1415926535897932384626433832795f);

8 printf(“d – ‘%10s’\n”, “Ten”);

9 printf(“e – ‘%-10s’\n”, “Ten”);

10 printf(“f – ‘%-10.3s’\n”, “April”);

11 return 0;

12 }

Listing 2: Output
a – ‘ 5’

b – ‘7.5’

c – ‘3.14’

d – ‘ Ten’

e – ‘Ten ‘

f – ‘Apr ‘

Listing 2:
An explanation
Line 5 The ‘2’ means we must output at least two

digits, so printf pads the number 5 with a
leading space. (Note the use of single
quotes to indicate padding in each example
– thanks, Dennis!)

Line 6 Padding the entire number to 3 characters,
with a maximum of one digit after the
decimal point.

Line 7 By omitting the field width, the only
restriction is the precision. In this case, two
decimal places. This format is fairly
common.

Line 8 The string is padded into 10 character wide
fields, regardless of string width.

Line 9 A minus sign will adjust all output to the
left-hand side.

Line 10 Again, the minus sign justifies the text to
the left of the field, but here will also limit it
to a maximum of three characters.

fflush(stdout);

The fflush function takes one argument, indicating
the “stream”, to empty. This can be a file pointer (as
we’ll see later), or one of the special file pointers like
stdout, the standard output device, or stderr, the
standard error stream. If the stream is given as NULL,
then all streams are flushed.

It is expected that all output (which gives the
results of a programs’ operation) goes to stdout,
whilst any errors that occur as a consequence of
trying to produce that output are given to
stderr.

Rhythm is the key
Keyboard handling within C is
fairly limited. This is because the
language was designed in an
era when games like Quake
didn’t exist, and its only
purpose was in creating
software that required a more
sedate rate of data entry! Even
to us Linux users of today, these
routines are largely adequate
because a lot of our work involves
batch files rather than interactive input.
ANSI C can’t even write the classic ‘press any
key to continue’ prompt! However, if you play to the
strengths of the language you’ll find there’s enough
functionality to go around.

Searchin’
scanf (short for scan formatted) is the sister of printf.
It takes a string describing the format of the line and
a list of arguments. These arguments are the
locations in memory where the read data is to be
placed, i.e. they must be pointers. Failure to do so
will cause a segmentation fault. (Omitting the & in
front of a variable name is all too common.)

char szFromUnits[32];

float fConversionNumber;

scanf(“%s %f”, szFromUnits,U

&fConversionNumber);

A space between each format specifier (%s and %f,
in this example) tells scanf to ignore all white space
between the values. A non-space character (for
example a letter) will tell scanf to expect that letter
(and only that letter) in the input stream. If that letter
is not forthcoming, scanf will not read any more data
and will exit, having failed. Its return value will be a
count of the parameters it managed to read
successfully.

For more complex input, there are other format
specifiers you may use, which are listed in Table 2.

When reading a hexadecimal number, only valid
hex characters will be considered. Should you enter a
value outside the [0..9,a..f] range, scanf will assume
the hex number has completed and move on. It will
take the last (invalid hex) character and treat it as the
first character in the next input field. Should this
character not fit in with the next specifier (for
example, it may be a letter, whereas scanf expects a
%d) the function will return as usual, indicating the
number of valid parameters it managed to read.

Y kant Tori read
In addition to scanf there are three
other functions to consider: getchar,
unget and gets. All handle standard
input, but again, for ease of

description, we shall assume this to
be the keyboard:

ch = getchar();

This retrieves a single key,
returning its ASCII value

into the variable, ch.
However, the input isn’t

flushed (and the getchar
function doesn’t return) until

you press the enter key. As a
consequence, the input buffer still

contains an enter key, which will get used by the next
call to getchar (but not scanf or gets).

If several getchars are called, thus:

ch1 = getchar();

ch2 = getchar();

ch3 = getchar();

ch4 = getchar();

and you type:

char { ENTER}

the first getchar will not return until you hit the enter
key, at which point all the variables (up to the point

PROGRAMMING

58 LINUX MAGAZINE Issue 18 • 2002

Table 2
Format What it reads

%d Decimal integer (the variable it is read into determines whether the result
will be signed or unsigned)

%o Octal integer
%x Hexadecimal integer
%f Floating point number
%c This reads the next character – %c doesn’t skip white space like the

others. It is more usual for this to feature in low-level file parsing
%s A string – characters are copied until white space is encountered, at

which point scanf will terminate the string with NULL

The author
Steven Goodwin celebrates (really!) 10 years of C
programming. Over that time he’s written compilers,
emulators, quantum superpositions, and four
published computer games.

where { ENTER } was pressed) will be
filled with the appropriate
character (c1=’c’, c2=’h’, c3=’a’,
c4=’r’). I recommend
experimenting with this concept
by pressing { ENTER } at
different places, until you’re
confident with it.

A saucerful of
secrets
I will now spill the beans on two
interesting facts about getchar. No
really, they ARE interesting! The first is
that a Ctrl+D from the shell will cause
getchar to exit immediately with an error code: EOF,
or -1. This is the only other key press (besides { ENTER
}) that will do this.

This also leads us onto the second fact: the get
character routine must return an integer, not a
character. Otherwise, getchar cannot return all
possible characters (from 0 to 255) and an error
code: EOF (or -1) is displayed.

Space oddity
ungetc is a peculiar little function that will place any
single character “back”! It doesn’t write it out to the
screen, but places it into the keyboard buffer – which
is what we actually read from when using gets, scanf
or getchar. Consequently ungetc will affect all three
of these input functions.

int ch1, ch2, ch3;

ch1 = getchar();

ch2 = getchar();

ungetc(‘x’, stdin);

ch3 = getchar();

“x” is the character we write back, whilst stdin
means the standard input stream (since the same
function can also be used with files – see later). By
using this function we have forced the letter x to
jump to the front queue (so to speak), causing the
following getchar function to return an ‘x’ instead of
any other character still in the input buffer.

Get shorty

gets(szInputString)

takes one line of text (terminated when the user
presses Enter) and places it into szInputString. For
ease of use, the resultant string ends with a NULL
terminator, instead of new line.

However, gets is one of the worst functions in the
C library! If you frowned at the

implementation of getchar
(the get character routine,

that returned an int), you
will be horrified by
gets! Why? It is not
protected! Functions
like strncpy allow you
specify the maximum
number of characters

that will be copied into the
string. It is a simple

precaution that stops the
library writing into memory

it doesn’t own. However, the
gets function is wearing no

such condom! Instead, I would
therefore suggest using:

char szInputString[80];

fgets(szInputString, 80, stdin);

In fact, gets is such a bad function that even gcc tells
you it is ‘dangerous and should not be used’. And
gcc is a piece of code! So, when an inanimate
program suddenly becomes sentient, gains a
personality and has enough compassion to tell you
something is dangerous I think you should listen,
don’t you?

PROGRAMMING

59LINUX MAGAZINEIssue 18 • 2002

Weak types
So what are they? Well, a variable of type char
lets us store and process character data.
However, if we were to use it in a situation
where it would be considered as a number (and
NOT a character), it would ‘behave’ as a
number. In the printf example, we might ask
the character to be printed out as a number. In
which case, when behaving like a number, the
character A would be outputted as 65 (its ASCII
value). The same is true if working backwards:
an integer with the number 65, when treated
as a char and printed with %c will produce an
A. As we’ve already mentioned, this can cause
problems. The ability to do this within a
language means it is a weakly type language.
And the types themselves are weak types.

