
C: Part 7

LANGUAGE
OF THE ‘C’

PROGRAMMING

62 LINUX MAGAZINE Issue 20 • 2002

Table 1: ato* functions
Function Return type Comments
atoi int This also supports the ‘e’ notation, which means the string ‘8e2’

will equate to 800 (8 x 102). However, it doesn’t support the
decimal point in any form, so 1.5e4 becomes 1, not 15000
because it terminates at the dot.

atol long This functions as atoi. Under i386-based Linux machines, ints and
longs both use 4 bytes, so are functionally equivalent. However, if
you are using longs you should use atol, as it describes more
accurately what you what to do, and makes your code easier to
port.

atof double Naturally, this has to accept the ‘.’ as a decimal point for numbers
like 3.1415927. However, atof also permits its use with numbers
like 1.5e4, which in this case does become 15000.

This month, C

programmer in

residence, Steven

Goodwin, looks at

library functions.

Where they are,

what they do, and

how to use them

One of the benefits of Open Source is that you
don’t have to re-build an entire car (re-
inventing the wheel, chassis, engine and full

leather interiors in the process) if you only want to add
a cup holder to your dashboard! Libraries perform a
similar function for the programmer. Most languages
are supplied with a set of standard libraries, and C is
no different. Our library routines range from basic
string handling (like strcpy and strcmp) to a complete
quicksort implementation. We have already seen atof
(which converts a string into a number), but there are
many others, some of which we shall cover here.

One to another
With all data processing applications there is an
input, a process and an output. It is extremely rare for
the data in each stage to be in the same format. The
input might be a file containing text strings with
numbers; the processing might require floating point;

and the output may go to the screen as text.
Converting from strings is done with the

ato* set of functions (see Table 1), for which
you’ll need to include the stdlib.h header file.

These take a NUL (sometimes called NULL)
terminated string and return a single value of a

specific type. There is a different function to return
integers, floating point numbers and long integrals.
Each function reads characters from the string until it
finds one it doesn’t like (a space or a letter, for
example), at which point it stops and returns the
number it’s worked out so far.

As a side point, if you’re reading existing code, you
might also find an atoll function, which converts text
into a ‘long long’ (aka a QuadWord, or 8 bytes).
Similarly, there are also functions like strtof, strtod
and strtoq (meaning string to, as opposed to ASCII
to) for converting into floats, doubles and
quadwords, respectively. All these functions exist in
the ISO 9x C standard.

Converting back from an integer into a string is
quite straightforward. We’ve already seen how printf
can use a format specifier to take an int and output it
as individual digits. So what we need is a function
identical to printf, but which outputs into a string.
Guess what? Someone’s already done it!

char szNumberAsText[32];

int iNumber;

sprintf(szNumberAsText, “%d”, iNumber);

PROGRAMMING

63LINUX MAGAZINEIssue 20 • 2002

Listing 1
1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 int iBigNumber = 76543, iBiggerNumber = U

98765, iBiggestNumber = 196608;

6 short iShorterVariable;

7

8 iShorterVariable = (short) iBigNumber;

9 printf(“(short) %d = %d\n”, iBigNumber,U

iShorterVariable);

10 iShorterVariable = (short) iBiggerNumber;

11 printf(“(short) %d = %d\n”, iBiggerNumber,U

iShorterVariable);

12 iShorterVariable = (short) iBiggestNumber;

13 printf(“(short) %d = %d\n “, U

iBiggestNumber, iShorterVariable);

14

15 return 0;

16 }

Listing 1: Output
(short) 76543 = 11007

(short) 98765 = –32307

(short) 196608 = 0

Table 2: Effects of casting bits
Lost by casting These are the 16 bits present in a short integer

131072 65536 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
76543 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
98765 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
196608

As always, make sure you declare a string variable
with enough space to take the largest possible
outcome. For those of you old enough to remember
BASIC, this is as close to STR$ as C gets.

Beat mama
Converting between variables (such as int and long) is
done through type casting. Here, the compiler looks
at the source variable and works out how to store
the same value in the destination variable. The
compiler will do this automatically when assigning
between types as an implicit cast. To reduce
misunderstandings (and compiler warnings) it is
better to always use an explicit cast. Casting uses the
bracketed type notation we’ve used before:

int iInteger=2002;

short iShort;

iShort = (short)iInteger;

Some conversions cannot work, such as casting a
structure into an integer, and some work but with
side effects. The latter occurs when one variable (say
an int) is being cast into another (a short) which has
fewer bits in which to store the result.

Listing 1: An explanation
Although the results may appear unpredictable, they
are not. ‘The casting takes the least significant bits
and copies them.’ as it can from the int to the short,
16 in our case. In the first example, 76543, this
equates to 11007 because the difference (65536) is
stored in bits above the first 16. This is best visualised
by writing out the number as if it were binary, (see
Table 2).

The same effect can be seen with the last
example (where 196608 becomes 0). The second
example, however, has extra bit. Because the short
variable is signed, the most significant bit (the
16th, 32768 one) actually represents minus 32768,
producing:

–32768+256+128+64+8+4+1 = –32307

It is possible to check whether a particular number
will lose precision before casting, but is easier (and
generally quicker) to cast, cast back and see if the
numbers still match! However, casting between
integral types is not something you should do as a
matter of course as it produces bugs, induced by this
problem.

Finally, when casting a float into any integral
type (char, short, int or long) you will lose
precision since the numbers after the decimal point
cannot be stored. Floats are simply truncated,
rounding down to the nearest whole number (an
oft-used trick). It does this with special code
(usually a specific CPU instruction), because
floating point numbers are stored in IEEE format,
not the binary one above. However, once in an
integral format the numbers are subjected to the
same casting rules as above.

Anywhere is
One of the simplest input validating functions you
might write for yourself is ‘IsADigit’, which simply
tells you if the character you’ve read in is a digit, or
not. You’d probably write something like this:

The
casting

takes the
least

significant
bits and
copies
them

PROGRAMMING

64 LINUX MAGAZINE Issue 20 • 2002

Table 3: Some ctype.h functions
Function Comments Successful cases

isupper Upper case letters A-Z
islower Lower case letters a-z
isalpha All alphabetic characters A-Z, a-z
isalnum An alphabetic, or

numeric character A-Z, a-z, 0-9
isdigit A decimal digit 0-9
isxdigit A hexadecimal digit 0-9, a-f, A-F
isprint Any printable character Most ASCII codes 32-127
isspace Whitespace character tab, newline, return & space
ispunct Standard punctuation !, “, #, $, %, &, ‘, etc
iscntrl Any control code All ASCII code before 32, & after 127
isgraph Graphical character All ASCII from 33 to 126 inclusive.

Table 4: More
ctype.h functions

Function Comments

toupper Converts a letter from lower case to
its upper case equivalent. Non-
alphabetic characters remain
unchanged.

tolower Converts a letter from upper case to
its lower case equivalent. Non-
alphabetic characters remain
unchanged.

int IsADigit(char c)

{

if (c >= ‘0’ && c <= ‘9’)

return 1;

else

return 0;

}

I will not fault you for it. However, there is a set of
functions that do this already and a lot more besides
(see Table 3). Each function below takes a single
character, and returns 0 for failure, and non-0 for
success. You must include ctype.h to use them.

The implementation for this is quite interesting,
and explains why each returns non-0, as opposed to
1. Instead of 11 functions (the GNU extensions
feature isblank, not covered here) there is one array.
Each element in that array refers to a single
character; the contents refer to a set of flags. These
flags, “isupper”, “islower” and so on, can be
checked individually (with a single bitwise and)
eliminating the need for function calls, if statements
and other processor-wasting instructions!

The same idea is used for two other useful
functions, also from ctype.h (see Table 4). These
functions actually take an int (not a char) and return
an int (not a char)! This usually has no impact on
your code; it is to allow code like toupper(EOF) to
return EOF on a system with unsigned chars (where
EOF, being -1, doesn’t fit).

char szName[128], *pName;

int bWasLastWhiteSpace = 1;

strcpy(szName, “capitalise all initial

letters”);

pName = szName;

while(*pName)

{

if (bWasLastWhiteSpace)

*pName = toupper(*pName);

bWasLastWhiteSpace = isspace(*pName);

pName++;

}

3am eternal
Time is a many fingered creature: a stealer of days, a
ravager of youth... and a function in C that returns
the number of seconds since the January 1 1970!
This base function is the root of many others that will
work out the date, day of the week and year. This,
and all other time related functions mentioned here
require the time.h header to be included.

time_t iCurrentTime;

iCurrentTime = time(NULL); /* method 1

*/

time(&iCurrentTime); /* method 2 */

Two points here. The first is that the time function
uses its own type, time_t. It is, however, a disguised
long integer, so you can add 60 to it to get the time

Time
is a many
fingered

creature: a
stealer of

days, a
ravager of

youth

Continued...

...continued

PROGRAMMING

65LINUX MAGAZINEIssue 20 • 2002

Table 5: tm structure
Element Explanation Comment

tm_sec Seconds
tm_min Minutes
tm_hour Hours In 24 hour clock.
tm_mday Day of the month The 3rd of February would return 3, here
tm_mon Month of the year 0=January, 1=February, etc.
tm_year Year Counted from 1900. So 2002 is 102.
tm_wday Day of the week 0=Sunday, 1=Monday, etc.
tm_yday Day of the year 0=January 1st, 1=Jan 2nd, etc.
tm_isdst Is daylight savings time Can be -1, 0 or 1.
tm_gmtoff Seconds east of GMT

(a.k.a. UTC) Stored as a long, not an int.
tm_zone Time zone description A text string, not an int.

Note: pEasyReadTime refers to some private data of the localtime function. This data gets (re-)written upon
each call to localtime. Therefore, you should copy this data to a local variable if you do not intend to use it
immediately after retrieving it.

Table 6: Time specifiers
Format Output

%a Name of day, abbreviated. Sun, Mon, etc.
%A Name of day, in full. Sunday, Monday, etc.
%b Name of month, abbreviated. Jan, Feb, etc.
%B Name of month, in full. January, February, etc.
%T The time in 24 hour format (HH:MM:SS)
%Y The year, in full. 2000, 2001, 2002.

Listing 2
1 #include <stdio.h>

2 #include <stdlib.h> /* this is where U

rand() lives */

3

4 int main(int argc, char *argv[])

5 {

6 int i;

7

8 for(i=0;i<10;i++)

9 printf(“%d “, rand()/(RAND_MAX/100 +

1));

10

11 return 0;

12 }

after one minute. Secondly, both instances of the
function are identical. It returns the same number as
it assigns to the pointer (if supplied). So use
whichever is suitable for your purposes.

Once we have this ‘time_t’ number we can pass it
to other functions to make it more user friendly.

time_t iCurrentTime;

struct tm *pEasyReadTime;

iCurrentTime = time(NULL);

pEasyReadTime = localtime(&iCurrentTime);

printf(“The current time is %.2d : %.2d \n”,

pEasyReadTime->tm_hour, pEasyReadTime->tm_min);

The tm structure has a number of useful elements,
which can be seen in Table 5.

To make this the date even more readable, it
would be nice to retrieve the names of the month,

or the day. This is amply supported with the
strftime function.

char szTimeString[64];

strftime(szTimeString, 64, “It’s %A

today!!”, pt);

This function works like an sprintf, formatting the text
string given into the variable szTimeString. However,
strftime has a special set of specifiers, specific to time.
These are the same as those used to set the time using
the date command (type date –help at the shell for a
complete list). Table 6 has a brief list.
The second parameter (64) is the maximum number of
characters to write (including the NUL terminator). If
the formatted string would exceed this number, no
string is written, and the function returns 0. Otherwise,
it returns the number of characters written.

Against all odds
At some point in your life you’ll need a random
number generator and at that point, you’ll need to
use rand. This function attempts to defy logic –
persuading a completely rigid, logical, structured
system to produce an arbitrary number without any

PROGRAMMING

66 LINUX MAGAZINE Issue 20 • 2002

Listing 3
1 #include <stdio.h>

2 #include <stdlib.h>

3

4 struct sTempElement {

5 float fTemp;

6 int iHour;

7 };

8

9 int qs_CompareTemp(const void *p1, const

void *p2)

10 {

11 struct sTempElement *pT1 = (struct

sTempElement *)p1;

12 struct sTempElement *pT2 = (struct

sTempElement *)p2;

13

14 if (pT2->fTemp < pT1->fTemp) return -1;

15 if (pT2->fTemp > pT1->fTemp) return 1;

16 return 0;

17 }

18

19 int main(int argc, char *argv[])

20 {

21 struct sTempElement TempEachHour[24] = {

22 {20,0}, {18,1}, {17,2}, {16,3}, {15,4},

{17,5}, {18,6}, {19,7},

23 {20,8}, {21,9}, {22,10}, {23,11}, {24,12},

{25,13}, {26,14},

24 {27,15}, {28,16}, {29,17}, {27,18},

{26,19}, {25,20}, {24,21},

25 {23,22}, {22,23},

26 };

27 int i;

28

29 qsort(&TempEachHour[0], 24, sizeof(struct

sTempElement), qs_CompareTemp);

30

31 printf(“Hottest Temperatures Today\n”);

32

33 for(i=0;i<24;i++)

34 printf(“#%.2d : %.1f Centigrade at

%.2d:00\n”, i, TempEachHour[i].fTemp,

TempEachHour[i].iHour);

35

36 return 0;

37 }

patterns. It is a difficult mathematical problem, so
thankfully it’s included in the standard libraries.

The function, rand(), produces a random number
between 0 and 2,147,483,647, which, for ease of use
is defined as RAND_MAX. It is more useful, however, to
limit this range to something with only 10 possibilities,
say. Taking the modulus of rand() is highly unrandom
(try it and see!), but it can be used effectively thus:

int iRandomNumber;

iRandomNumber = rand() / (RAND_MAX/10 + 1);

This produces numbers between 0 and 9, and is a
good second step. I said second step for a reason. Try
writing a program that prints 10 random numbers
between 0 and 99. For an example see Listing 2.

Run the program and note down the numbers. For
example, ‘84 39 78 79 91 19 33 76 27 55’. Now run
it again and look for any similarities between both
sets of numbers. Confused?

The random numbers, as supplied, are not random
since they work through the same algorithm in both
cases, starting from a given seed. In order to produce
a different set of random numbers, we must change
the seed. You can seed the generator with:

srand(0);

However, any constant number will produce the same
sequence of numbers, and you can’t seed srand with

a random number (since that’s already been
determined from the last seed), so what do you do?

Cheat! Have a look at the time! If we use the
include file time.h, we have access to a function
called time, which returns the number of seconds
since January 1 1970.

srand(time(0));

That should be random enough for most software.
There is one annoying side effect with time seeding,
which is that some bugs will only occur with a
specific random sequence. In order to repeat this
sequence we can store the result from time(0), and
use it explicitly next time round.

Two divided by zero

The maths library is the only one I’m mentioning here
that requires more than a simple #include <math.h>
line – you must also link in the maths library, meaning
you should compile with the –lm option, thus:

gcc mathsprogram.c –lm

There’s a complete set of maths functions, like sin,
cos and tan, along with their inverse (asin, acos and
atan) and hyperbolic versions (sinh, cosh, and tanh).
Each requires the angles to be given in radians as a
double (not a float), and within the correct range
(where appropriate). There are also functions like abs

PROGRAMMING

67LINUX MAGAZINEIssue 20 • 2002

you should return -1. If the second appears later,
return 1, or if they are identical, return 0 (see the
qsort shortcut boxout).

You can actually check any number of criteria you
wish. For example, if two temperatures are the same,
you could use the time of day as a tie-breaker. In this
example we are sorting our array for hottest
temperatures. We could sort for coldest by simply
swapping the sign of the return variable.

Lines 21-26 we’ve seen before, while 31-34 is
simple code we could probably write in our sleep
by now. Line 29, however, is the start of
something good!

The parameters of our beloved qsort function are
(in order): the pointer to the first element in the array
to sort, the number of elements in the array, the size
of each element and finally the callback function
declared above. qsort returns when the
TempEachHour array has been sorted, element 0
holding the ‘greatest’ value; according to our rules in
qs_CompareTemp.

Finally, we output our results the screen and marvel
at a good project, well done!

The author
Steven Goodwin celebrated
(really!) 10 years of C
programming last year.
Over that time he’s written
compilers, emulators,
quantum superpositions
and four published
computer games.

qsort shortcut
(to find the absolute value; ignoring any sign), sqrt
(square root of a positive number) and log (for
natural logarithms).

double fAngle, fTheta;

fTheta = M_PI * 180; /* 180 degrees,

converted to radians */

fAngle = sin(fTheta);

printf(“sine(%f) = %f\n”, tTheta, fAngle);

You also get access to a number of mathematical
constants, such as M_PI, M_LN2 and M_LOG10E.
Sneaking a peak into /usr/include/math.h will give
you full details of these macros and the above
functions. A decent maths book will give you full
details of how to use them!

Sorted for E’s and Whizz
Finally, something that will prevent an army of re-
invented wheels – quicksort! The C language includes
a fast, flexible version of quicksort that you can use
to sort any array based on specific criteria designed
by the programmer. To do this, qsort (as it is called)
knows nothing about your data; it ‘simply’ shuffles
your data around in memory according the rules laid
down by the quicksort algorithm.

Lines 4-6 define the structure for sorting. We’re
including the time here because qsort sorts the entire
structure. Meaning we might know that the warmest
point in the day was 29 degrees centigrade, but not
what time it was. We knew that information
previously only because of its position in the array.
Once the data is sorted, its order is lost, so we need
to store this information explicitly.

The magic works with lines 9 to 17. This is the
callback function (first introduced in part 4) that qsort
uses to arrange each entry. Because qsort can never
know every type of structure you might want to use,
it refers to each element as an anonymous block of
memory. It does this by using a void * (pronounced
‘void pointer’), which describes a pointer, but without
describing which particular type of data is at that
memory location. The word ‘const’ tells the compiler
(and the programmer) that the data to which p1
points cannot change (i.e. it remains constant) whilst
in the function. We will cover this more fully later.

Lines 11 & 12 perform some type casting, allowing
us to refer to the individual elements within the
structure. Casting pointers is the same as casting any
other type, it just looks a little less pretty. pT1 and
pT2 can now refer to structures directly, whereas void
* can’t because it doesn’t (by definition) point to any
specific type, and therefore has no knowledge of
how to reference it.

The callback function required by qsort should
return one of three values, –1, 1 or 0. If, of the two
elements given, the first belongs sooner in the list

In the example given here, I’ve written the code
explicitly returning –1, 0 or 1. In reality
however, qsort considers any negative number
to be equivalent to –1, and all positive numbers
to be 1. So, in some cases it is possible to
write:

return pT2->iTemp – pT1->iTemp;

In some cases though. Not this one! Why?
Because we’re using floats and would have
to cast the result to an integer. This in
turn will cause precision errors in our
data. How? Well, imagine if fTemp1 was
12.4, and fTemp2 was 12.2, our
expression would evaluate to 0.2. This in
turn would get truncated to 0 (as we are
casting to an integral value). qsort would
believe them to be equal and continue
shuffling data accordingly – certainly not what
we intended!

If your memory stretches back to part three
you might remember the strcmp function. It
compares two strings. If the first string is ‘less
than’ (i.e. first in the alphabet), it returns –1,
and if it is greater (i.e. later), it returns 1. Equal
strings return 0. It’s more than a coincidence I
bring this point to bear at this time! The strcmp
function is neatly moulded to make sorting
strings very easy. I hope that shortcut saves you
re-inventing another wheel!

