LR

LI L

PROGRAMMING |
(T
T]
L5 __] L _
] P ———

Pt e S

LS LT L R ey I LAy Lk

AL L

T 1T LU T N n

C: Part 8

LANGUAGE
OF THE “C”

The data we've worked with so far has all been

In part eight of
Steve Goodwin's ‘C'
tutorial we take a
look at memory
allocation

static — i.e. of a predetermined, known size. We

declare an array, structure, or array of structures
within the program and use it. That's fine for the
projects we've done so far but if we were writing a
“real” program it is highly unlikely we could do this.
A word processor couldn’t know the size of every file
it would have to work with; no more than a paint
package could know the size of every picture it needs
to manipulate. So how do we allocate memory
dynamically at run-time?

Set adrift on memory bliss

The answer, quite naturally enough, is by using a
function to allocate memory dynamically at run-time!
That function is called malloc.

Listing 1, line 2 includes the appropriate header for
memory allocation. This file, as we've seen several
times before, includes the prototypes for several
functions that are implemented inside glibc. We've
used it before for the atof and atoi functions and
random numbers. Now we're using it for memory
management.

The malloc in line 8 stands for Memory
ALLOCation and requests 4Kb of memory (1,024

Listing 1

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char *argv[])
54

6 int *pData;

7

8 pData = (int *)malloc 2
(1024*si zeof (int));

9 if (pData)

10 {

11 *(pDatat0) = 1; /* Wite an2
int to the first available nenory2
location */

12 printf(“%", *(pDatat+512))2
i/ * CQutput a byte from sonewhere?
in the mddle */

13 *(pData+1023) = 1024; /*2
Wite into the last */

14 free(pData);

15 pData = NULL;

16 }
17 return 0;
18 }

G LINUX MAGAZINE ' Issue 21 « 2002

integer elements, each 4 bytes in size). Because the
memory allocation routines don’t know what type of
data you want, it cannot return a pointer with the
correct type. Although there could be routines called
‘malloc_int’ and ‘malloc_short’, this would not help if
we created a custom type called ‘Person’ as we'd
have to write special allocation code for
‘malloc_Person’ and recompile it into ‘glibc’ every
time we wrote a new program. Instead, malloc uses a
‘void pointer’, which allows the pData variable to
point to data of an undetermined type. Review last
month’s article on type casting to remind yourself
about this, if necessary.

Because memory is finite, it is possible for this
function to fail. We must therefore check that the
pointer is valid (line 9), and gracefully handle any
allocation that does not happen. The ‘C’" standard
specifies that malloc must return a NULL pointer —
which is numerically equal to zero — should the
memory allocation fail.

ptr = malloc(1000000000); /* Probably can't
allocate this! */

[* ptr is now NULL */
ptr = 10; / Trying to store the nunber 10
at menory location 0 */

/* This causes a segnentation fault, or core
dunp */

The complexity of processing failed allocations is likely
to grow proportionally with the size of the project.
Still, you must keep thinking ‘what should happen if
this fails’ and handle it. It is not polite for the user to
be thrown out of the program (by a segmentation
fault) because you didn’t code it properly! If you
absolutely need some memory (for an ‘I've run out of
memory’ message, say) then allocate that memory
when the program starts. That way, if the program
can start successfully it can run successfully —in all
situations and without problems. When loading a file,
for instance, some text editors create a working

buffer ahead of time. If there is not enough memory
for this buffer then the file is opened in read only
mode. This is not ideal, perhaps, but significantly
better than letting the user edit a text for an hour,
only to be told ‘I've run out of memory’ and find they
are unable to save!

Lines 11-13 read and write data from the newly
created memory block. Like arrays, referencing
elements outside the permitted bounds can cause
segmentation faults. The data is not initialised to any
specific value either, so line 12 could print junk.

Pointers, being expressions likes any other, can
reference data with simple pointer arithmetic. Like so:

int *pData2;

pData2 = pData+511;
to the 512 nd elenent */

*(pbata2 + 10) = 1;
*(pData + 521) = 1; */

/* assign a new pointer

/* equivalent to

Referencing the elements can be done with either
pointers or square brackets:

pData[10] = 123; /* equivalent to *(pData + 10)
= 123; */

although the latter is not recommended, as it implies
you're referencing an array — which you‘re not!

Finally, in the same box labelled “what goes up,
must come down” is the memory de-allocation routine,
free, at line 14. It is good practice to do this explicitly
whenever you've finished using the memory, as this
allows someone else to use it and can, in turn, also
improve performance. However, some programmers
assume that all un-freed memory is de-allocated
automatically when you exit the program! We aren’t
amongst them — and we would hope you're not either!

Line 15 is a stylistic point. Because free does not
(and cannot) clear the memory pointer, it remains
non-NULL. However, the data to which it points does
not remain valid, so if we re-used our validity check
(line 9) it would succeed — but be in error. Therefore,
in the same way as we reset file pointers previously,
we set the pointer to NULL — just to be safe.

Now, before we move onto something completely
different, let's briefly visit two different allocation
functions, realloc and calloc.

| can see clearly now

The other main function for memory allocation is
calloc. Rewriting the above example using calloc
would require just one change to Listing 1:

8 pbData = (int *)calloc(1024, sizeof(int));

The only difference (syntax aside) is that calloc will
reset each newly allocated memory address from

PROGRAMMING

pData to zero for you automatically. Which is nice!

You can de-allocate the memory with the same
free function above and, as with malloc, no types are
passed in — only numbers.

From a personal point of view | usually use malloc,
as opposed to calloc. This is because we know that
clearing the memory to zeros takes time and since we
will be manually filling the memory with useful data,
pertinent to our program, we don’t need to waste
processor cycles.

Before we move on, there is one other allocation
function you should be aware of, realloc.

Let’s go round again

The only re-allocation routine we have at our disposal
is realloc. This is used to resize a memory block
you've already allocated.

pNewPtr = realloc(pQ dPtr, iNewMenorySize);

So, should you request 5Kb of space then find you
need 10Kb, you can use realloc to make a little magic
work and produce a larger block! pOldPtr is the original
pointer you got from malloc or calloc, and
iNewMemorySize should be the total number of bytes
you want in memory. It could be larger or smaller '
than the size of the original block, but is an
absolute value (i.e. not relative). (As a bonus,
passing a NULL pointer for pOIdPtr will cause
realloc to function exactly like malloc.) The data
from pOldPtr will automatically get copied into
pNewpPtr if the function succeeds.

There are two caveats however. One is that there
might not be enough memory for the larger size
block, and pNewPtr will be NULL. The other is that the
pointer to the new memory block, returned by realloc,
might differ from the old pointer you passed into it! This
is the important point. If you've been holding references
to your data as pointers to this pOIldPtr block they will all
be invalid and, as they're probably scattered throughout
your code, very hard to track down and reassign with the
new memory locations.

\ _—

struct sMY_DATA *g_pDat a;

int GetMDataEntry(int idx)
{
return *(g_pData + idx).iEntry; /* Sane as
g_pData[idx].iEntry */
}

The code above solves that problem by providing a
single point of access to your allocated data — the
global g_pData variable — and is a good thing.
However, be careful of the code such as:

g_pData = realloc(g_pData, iNewSize + 1024); /*
Bad coding!!! */

Issue 21 ¢ 2002 LINUX MAGAZINE

: - ; - -

- - L

- w o L
I

Should the allocation fail g_pData will become NULL
and you will lose your original pointer to the data. A
core dump will ensue next time the pointer is de-
referenced and you'll be unable to free the memory.

Finally, if you're looking for a function to remind
you how much memory has been allocated at the
memory location g_pData then keep looking! There is
no safe, portable way of finding this information out.
If you need the information, then store it along with
your pointer.

Book of days

Because of the similarities with dynamic memory and
static strings (both point to anonymous blocks of
memory) there are manipulation functions with
almost identical names. They are almost identical in
operation, too! However, whereas strings know their
size (because of the NUL terminator), the memory
functions have to be told. Their descriptions (i.e.
prototypes) also live in string.h.

The void pointer comes to the fore here, too. Since
writing code to handle a memory copy of integers
and a memory copy of floats is doubling up code, ‘C’
uses generic memory handling functions, as shown in
Table 1, that take void pointers and describe the
amount of data in bytes (even if the memory refers to
floats). This is because the routines know nothing of
the type (naturally — they're void pointers!) and a byte
is the lowest common denominator.

One word describes the differences between a
memcpy and a memmove — overlap. One sentence
describes it — that is, if the range of memory locations
in the source overlap any part of the memory
locations indicated in the destination you will have to
use memmove to prevent memory corruption. This is
to allow the C library implementers to use more
optimised code within the memcpy function.

There are also two simple functions to query
memory contents shown in Table 2.

At first glance it might look like two structures

memcpy(pFrom, pTo, 100);

Table 1 - Memory handling functions

Copy 100 bytes of memory from pFrom
to pTo. Naturally, both memory ranges
should point to our own valid memory.

memmove(pFrom, pTo, 100);

Move 100 bytes of memory from
pFrom to pTo. See note below.

memset(pFrom, ‘A’, 100);

Fill 100 bytes of memory with the
ASCII character ‘A’ If you wanted to
write 25 floats instead, you could not
use this function since it deals in bytes,
and would write the data manually
with a for loop. This function is often
used with "\0’ or 0 in place of ‘A’ to
clear a portion of memory.

a LINUX MAGAZINE .

Issue 21 ¢ 2002

could be checked for equality with the memcmp
function, but this is not necessarily a good idea. The
reason for which, we shall now explain.

Hole in my shoe
Take a structure such as:

struct sPOSITION {
int i XGidPos;
intiYGidPos;
char i Floor;

E

It could, for example, be used to store the location of
a ghost in a 3D version of Pacman! We could write a
simple Al routine that moved the ghosts around the
maze by changing the iXGridPos, iYGridPos and
iFloor elements (we're not sure how ghosts would
climb stairs, but bear with us!). Then, when the
player’s position (also stored in an sPOSITION
structure) equalled the ghost’s position we could kill
the player. The code would probably look like this:

i f (mencnp(&Ghost. Position, &Player.Position,
si zeof (struct sPQSI TI ON) ==0)
KillPlayer();

However, this would probably never work and the
reason for this is padding.

The lunatics have overtaken the
asylum

If you count the number of bytes in the above
structure you should get nine: two integers at four
bytes a piece and one single byte character.
However, calling sizeof on this structure will yield a
different answer — 12! This is because the compiler
has automatically padded the structure to 12 bytes
to fit in with the memory model of the host
machine. This, on an Intel family IA32 system,
requires that all structure sizes must be in multiples
of four bytes, padding the char above to four bytes.
It also requires that all 32 bit values (like ints) should
start on 32 bit (i.e. four byte) boundaries. This is
called structure alignment.

So? Well, the padding means there are three bytes
unaccounted for in the structure and the memcmp
function will be trying to compare them for equality.
Since we haven't (and can't easily) set them up they
will be uninitialised (set to junk) and will prevent our
player from every getting killed (since junk is never
the same twice!). Instead of a bitwise test, we need
an element test, and the way to do that is to
manually compare each element:

if (Chost.Position.iXGidPos ==
Pl ayer. Posi tion.iXGidPos &&
Chost . Posi tion.iY&idPos ==

- 0011.J110101011000101 10010022002 22 D002 200 mlﬂlﬂlﬂﬂﬂlﬂlﬁﬂ[ﬂ.ﬂﬂﬂﬂlﬂﬂlllmﬂﬂ

Pl ayer. Position.iYGidPos &&
Ghost . Posi tion.iFloor ==
Pl ayer. Posi tion.iFl oor)
Ki Il Player();

For the completists out there, we will just say there
are two ways around doing this! The first is to
memcmp the first nine bytes only! This is very ugly,
doesn’t port well and breaks if the iFloor variable
becomes a short or if it becomes the first element in
the structure.

The other way is to memset the whole structure to
0 at the start of the game. From any point thereafter
the ‘other three bytes’ will be 0 and compare exactly,
enabling you to use the normal memcmp routine! It
is almost an acceptable solution but will be
problematic if you forget to memset any sPOSITION
structure you consequently try to memcmp!

If you're wondering why we've mentioned
structure padding in a section on memory (and not
structures) your answer is thus: there wasn't enough
rope for you to hang yourselves in the structures
article. You can't compare structures with ‘==, like
you can integers, so to stop people trying to open
the backdoor with the memcmp, we decided to lock
it first!

Wrapped around your finger
One trick used by a lot of programmers is to write a
“wrapper” for the memory allocation routines. This

|
Table 2 - Memory querying functions

iSame = memcmp(ptr1, ptr2, 10);

This compares the first 10 bytes of data
stored at each pointer. If they are
identical, it returns 0. If the data at

ptr1 is less than that at ptr2, =1 is
returned. If it is greater the function
returns +1. Note the similarity to
strcmp.

pFound = memchr(ptr, ‘A", 128);

Searches 128 bytes of memory, starting
at ptr, to look for the ‘A" character. If
no ‘A’ is found, a NULL pointer is
returned, otherwise pFound points the
first location in memory where one
occurs. Like memset, this only deals
with byte (i.e. character) data.
Searching memory for an integer
would require a custom loop.

being used. Writing the MyFree function then

becomes problematic since we can't find out from a
pointer how much memory has been allocated there.
What we need is to attach our own structure to each
block allocated through malloc to hold information
such as size and reason for allocation.

The most common way of doing this is to create a
structure (for the auxiliary data) and use MyMalloc to
allocate enough memory for the user’s data and your

means instead of calling malloc, your program will structure, in one block:

call a wrapper (a function that sits around some code

to monitor its usage, for example) like MyMalloc (free ptr = malloc(iSize + sizeof (MEMORY_BLOCK));
would be wrapped with MyfFree). In this way, you can
easily keep track of how much memory you are
using, how often they have been called, how much
has been freed, and how many leaks (memory you
have allocated, but not freed) you have. The code

might start off like this:

and then give the user the memory pointer N bytes
after ptr. This can be done in two ways. Either
create a byte pointer and increment it N times
(where N is the size of the block), or use a
MEMORY_BLOCK pointer and increment it once.
Both are equivalent.
int g_MemAl | oced=0;
char *pBytePtr = (char *)ptr;
void *M/Mal I oc(int iSize) MEMORY_BLOCK *pMenBl ock = (MEMORY_BLOCK *)ptr;
{
void *ptr = malloc(iSize); pBytePtr += sizeof (MEMORY_BLOCK) ;
pMenBl ock++;
if (ptr) g_MemAlloced +=iSize;
return ptr; Now we can review our memory usage at any time
} by looking through all the pointers. The difficulty is
the innocuous phrase: ‘all the pointers’. We need to
We can then find out how much memory we're using store each pointer as it is allocated, but where? An
with: array? Another allocated block? Or perhaps the
question is how?
printf(“Total allocated = % K\n",
g_Mem | oced/ 1024) ; Union of the snake
Linked lists are an oft-used data structure and feature
on every computer course we've ever known! It is a

general-purpose storage method that can grow

Issue 21 ¢ 2002 ' LINUX MAGAZINE m

But that’s just a start. We will also want to know how
much we're freeing, and perhaps why the memory is

i R]]
] -~ PROGRAMMING ________,__'__,_,_,_,__
L R]]

in the list.

in the list.

already seen:

char
intiSize;

pBl ock- >pNext
g_pFi rst Bl ock

pointer.

whi | e(pBl ock)
{

}

a LINUX MAGAZINE . Issue 21 « 2002

struct sMEMORY_BLOCK
} MEMORY_BLOCK;

dynamically as your data does, with very little
memory overhead. It comprises of two features:

e Each element has a pointer to the next element

e Asingle variable that points to the first element

Declaring a list is easy, and uses the syntax we've

typedef struct SMEMORY_BLOCK {
szReason[64] ;

*pNext ;

MEMORY_BLOCK *g_pFi rst Bl ock;

As a structure, MEMORY_BLOCK can point to itself.

But the structure hasn’t been declared yet — so how

can we set up a pointer to itself? It's this recursive

nature that can appear a little counter-intuitive

at first sight, but the code above should
show you how we do it.

By the time the compiler has

reached the first brace it knows about a
‘struct SMEMORY_BLOCK'. It doesn't yet
know what'’s inside it or how big it is, but it knows it
exists (unlike MEMORY_BLOCK - our easy-to-use
typedef — because it hasn't seen it yet!). This allows
the pNext pointer to be declared — the size required
by an int * is the same as a void *, or struct
SMEMORY_BLOCK * — and incorporated into the
structure. From here, we then use typedef to create a
synonym for MEMORY_BLOCK to make the code
look neater, although this is not essential. (Also see
the Mutual Inclusion boxout).

So with this knowledge, let's return to the memory
allocation example and see how MyMalloc can add
elements to the head of the list.

g_pFi rst Bl ock;
pBl ock;

When calling Myfree, it will search the list of
allocated blocks for a matching pointer. It does this
by iterating through each block with the pNext

MEMORY_BLOCK *pBl ock = g_pFirstBl ock;

/* Do something with pBlock */
pBlock = pBl ock->pNext ;

ITITINNEN TN i LT
I 1 i
e —
[]
- - - -

Once Myfree has found the pointer it can modify the
pNext pointers so the previous block to this points to
our next block. Also, in the special case where we
delete the element at the head of the list, we need to
reassign the g_pFirstBlock.

Linked lists, as a data structure, lend themselves
well to recursive searching routines and can be
extended by adding a previous pointer, or can be
upgraded to a tree structure by including two pChild
pointers instead. It is fairly easy to create code that
adds elements to the end of the list, or removes
specific elements from the middle. A great amount
has been written on these data structures and their
implementation, so we won't cover it here. Suffice it
to say, however, that these ideas can be utilised in a
myriad of software projects, and it's well worth
taking the time and effort to master it. The CD has a
complete example of the MyMalloc and MyFree
routines using linked lists, filling in the gaps above
which have been intentionally left blank, as an
exercise for you, the reader!

Although it's not sensible (or possible) to include a
structure inside its own structure (as this would
create a recursive structure approximately infinity
bytes long!), it is possible (and sometimes
desirable) to include a pointer inside A to point to
B, and vice-versa. Here's how:

struct SBETA;

struct sALPHA {
struct SBETA *pBeta;

1

struct sBETA {
struct SALPHA *pAl pha;

1

As you can see, there’s no difference in the
creation or handling of the structures compared
to the linked list example (we've omitted the
typedef’s here to prove it can be done!). You just
need to add the solo ‘struct sSBETA' line. This says
“there is a structure available called sBETA, but |
don’t know what it contains yet”. The compiler
can then use it happily in any structure where
the size of sBETA doesn’t need to be known (i.e.
as a pointer).

GCC will happily forgo the ‘struct sBETA' line,
and work exactly the same without it. However,
this is not guaranteed to happen across all
compilers or platforms and so should be
included, as above.

