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This month we look
at a number of
smaller language
features we've yet
to cover but, as
Steven Goodwin
explains, that
doesn’t make them
any less useful

58 LINUX MAGAZINE

C: Part 9

Love is a battlefield

When creating a structure, we don't always want to
use a whole integer for a piece of data — three bits
might be more than enough - so why waste space
when we needn’t? Also, if working with hardware,
it's very likely we'd have to deal with a control byte
where each bit means something different. We could
read the data as a byte and look at each bit with a
series of faceless bit masks and bitwise AND (&)
operators or we could use a bitfield and use names,
treating them like normal structure elements.

struct {

unsigned int LSB : 1,

unsigned int ThreeBits s 33

int : 0; /* pad to next word 2
*/

unsigned int Wordl LSB: 1;
} BitTest;

BitTest.LSB = 1;
BitTest.ThreeBits = 4;

Each element can consist of one of more bits, and is
described with the : notation, above. When accessed
it acts like a normal integer in all respects, except that
it has a smaller numeric range (naturally), and it is not
possible to take its address. The type must be an int
or an unsigned int. The effects are the same as for
normal variables. So, in the above example, if LSB
was instead declared as a signed int, it could only
store 0 or =1 (not 0 or 1, as it does here). Similarly,

ThreeBits can hold the range of values from 0 to 7,
as opposed to the signed version which would

hold +3 to —4. It is best to make all bitfields

unsigned for this reason, particularly as they
general reference bits and not numbers.

Individual bitfield elements cannot extend over
machine word boundaries (in the case of x86
machines, that occurs every 4 bytes, or 32 bits). If
you need more bits, then a : 0" will automatically
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pad the rest of the word, allowing you to start again.
No name is necessary when padding in this manner.
GCC, however, will automatically shuffle bits into the
next word if necessary, but when working at this low
level | prefer to know where my bits are, and will pad
explicitly, as in the example above!

As always, spacing is for clarity, and bitfields are
referenced like any other structure element. Should a
number greater than seven be applied to ThreeBits,
for example, all but the three least significant bits will
be lost, much the same as with casting, and
equivalent to:

BitTest.ThreeBits = value & 7;

To be useful, there should be several bitfields in a
structure, and they should mirror something useful in

Listing 1

#include <stdio.h>

union CharOrInt {
int iInteger;

cChar;

bi

int main(int argc, char *argv[])

{
10 union CharOrInt UnionTest;
11
12 UnionTest.ilInteger = 2002;
13 printf(“Int = %d, char = %d\n",2
UnionTest.iInteger, UnionTest.cChar);
14 UnionTest.cChar = ‘A’;
15 printf(“Int = %d, char = %d\n",2
UnionTest.iInteger, UnionTest.cChar);
16
17 return 0;
18 }
.

1
2
3
4
5 char
6
7
8
9
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the real world (perhaps as a Z80 register in a ZX
Spectrum emulator program)! Using them to save space

unsigned int Parity: 1; /* or overflow 2

is rarely justified outside of embedded systems, since i .
memory is cheap. To be really useful, they are often e A/ e D GBI 7
used in conjuncture with unions (no pun intended). padding */

unsigned int HalfCarry g dg
Union Clty blues int : 1; /* more padding */
The union is the little sister of a structure. They follow uns%gned %nt Z?ro o
the same syntax, they both like being typedefed into ?n;inzd int Sign : 1;

gs;

something more readable, and both have good uses
within C. Both structures and unions can hold (say)
four variables. However, unions can only hold one at
a time! Take a look at Listing 1.

Here you will see:

-46
65

Int
Int

2002, char
1857, char

This is because both variables are stored at the same
memory location, the size of the union itself being
the size of the largest element within the union.
Writing into one overwrites (at least part of) the data
in the other, and vice-versa. And the funny things is —
you don’t know which variable holds valid data, since
there is no way of knowing if cChar has been written
to last, or ilnteger! Now, before you think this has a
limited use (and start scanning this article for the next
song title!) let me show you a few examples.

union ConfigTagName {

int iConfigDatal[4];

struct {
int iMaxFilesOpen;
int iDefaultWindowWidth;
int iDefaultWindowHeight;
int iFirstWindowToOpen;
} Cfg;

} Config;

Since the array and the structure are both held at the

} Z80_Flags_Register;

This example shows us the power of combining
unions and bitfield structures. We can reference
individual bits, to make our emulation code intuitive
and easy to read, whilst retaining a simple way of
handling the whole register (for creating a snapshot,
say) when the need arises. For example,

7Z80_Flags_Register.Flags.Zero = 1;
7Z80_Flags_Register.Flags.Subtract = 0;
printf(*All flags = %d\n”,
7Z80_Flags_Register.iCC);

Only the first named element of a union may be
initialised on creation, the union as a whole cannot.
This is why the second element is usually the
structure (if it has one).

union CharOrInt coi = { 2002 };

If it is necessary to initialise several union elements,
you will have to assign each one individually.

Hold me now

There’s more than one way to store a variable. By
adding what is called a storage class to the
declaration, we can invoke five different types of
behaviour:

same memory locations we can reference the ® auto
configuration data in whichever manner pleases us. We ® register
can use Config.Cfg.iMaxFilesOpen (which has a ® volatile
programmer-friendly variable name), or ® extern
Config.iConfigData[0] as they are guaranteed to be at ® static

the same memory location. If we're saving the
information to a file, a loop (and not individual names)
could be used to write out each entry, whereas using
specific identifiers (such as iMaxFilesOpen) would take
extra effort. We can also use bitfields within unions, too.

union {
unsigned char iCC;
struct {
unsigned int Carry : 1;
unsigned int Subtract :1; /* also 2

called N flag */

auto is short for automatic, and is the common-or-
garden local variable that we've been using up to
now. All variables, unless qualified with one of the
other classes above, will become auto by default. It is
rarely used these days.

auto int iNormalVar = 12;

register tells the compiler that we will be using this

variable a lot, and would like it placed into a register
on the CPU to improve speed. This is only a request,
however, and the compiler is not compelled to do so
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(think what a mess it would get into if you requested
100 register variables, when the machine only has
eight!). Register is still seen in kernel code and some
tight loops, especially on embedded systems.
Naturally, should the variable be placed into a register
it will not be possible to take its address, but that
should not be an issue for us because there’s a
compiler warning should we try! Its use has fallen out
of favour in application development because today’s
compilers usually make a better guess at which
variables should be placed into registers than the
programmer. (It is the compiler that creates the code,
after all).

register int iLoopCount;

volatile was added to ANSI C from the original K&R
in order to solve problems with optimised memory
mapped systems, and is best explained with a short
example.

volatile int iDataOnPort;

/* get the serial port to share data at 2
this memory location*/
MapSerialPortToAddress (&iDataOnPort) ;

/* wait until the port is free */
while (iDataOnPort!=0)
; /% empty */

This loop appears to wait forever, since iDataOnPort is
never changed anywhere inside the loop. That is true.
However, since iDataOnPort is at a memory location
which is also used by the serial port, it would be
feasible for the loop to exit as soon as the port was
free and ready for use.

So why make a special type called volatile? Well,
imagine if the compiler decided to get clever! It
would see that this variable was used exclusively in
this loop and would consider putting the value of the
iDataOnPort variable into a register. It would no
longer be reading from the memory location, and
would therefore never realise the port was free,
causing the program to loop forever, as we'd
originally suspected. Without optimisations, the value
of iDataOnPort would be read from memory every
time it's used, but using the reserved word volatile
states the intention clearly.

extern doesn't actually declare a variable, it just
indicates that there is a variable somewhere with this
name, and of this type, in the program. It might
appear later in the file (allowing us to use variables
before they have been declared) or in another file
entirely. Any initialisers on the original declaration
should not be duplicated here, though. We will look
more at this when we cover multiple files and large
scale projects in a later issue.
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Listing 2

#include <stdio.h>

void CountCalls(void)

1

2

3

4 {

5 static int iCount=0;
6

7

8

9

iCount++;
printf(“Count = %d\n”, iCount);

10

11 int main(int argc, char *argv([])
12 {

13 CountCalls();

14 CountCalls();

15 CountCalls();

16 return 0;

17 }

L
extern int iLivesElsewhere;

Saving the best for last is the static class, shown in
Listing 2. This will output:

Count = 1
Count = 2
Count = 3

Static variables are very similar to global variables —
they retain their value throughout the life of the
program, and they will automatically initialise to zero
when the program starts. However, they have local
scope so can only be accessed by the function they
are declared in (like normal automatic local variables),
which leads to the behaviour demonstrated above.
Unfortunately, this makes resetting iCount to zero
quite tricky! It can be useful for returning strings
from functions, thus:

char *GetString(int iNumber)

{

static char str[32];
sprintf(str, “%d”, iNumber);
return str;

Without the static storage class, this would not work,
as the local str variable would get destroyed when
the function exited, leaving you with a pointer to an
invalid piece of data. However, because str will be
there (intact) when we exit GetString its data can be
safely referenced outside the function.

The problems come later, when we make two calls
to GetString, and do not handle the results
immediately, since the local array holding the first
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result gets overwritten by the second call. For
example:

printf(“%$s and %s are not what you expect!”,
GetString(l), GetString(4));

This technique can have its uses, but because it
produces this sort of problem is often considered
bad form.

Constant craving

There is a very special variable qualifier called const. It
can be used either as part of a normal variable
declaration, or with a function parameter. In both
cases, the value remains constant, and therefore
cannot change.

const float pi = 3.1415926f;

Here, we have declared a constant variable! We can
use pi as we would any other (compare it with
variables, print it out, and so on), but we are not
allowed to change it; the compiler will give us a
warning if we try.

pi += 0.3f; /* warning! */
new val = pi + 0.3f; /* valid ! */

Naturally, these constants must be assigned a value
when they're declared, otherwise it would be
impossible to set them up afterwards, wouldn't it?
Constants are used because it makes the code much
easier to read, provides type security that macros are
unable to provide, and data integrity that variables
cannot provide. In larger programs, constants are
used to maintain unity between several functions:
imagine if half the world chose pi to be 3.1415926,
whilst the other used 22/7! One single (global)
constant is a neat solution to this problem.

The second form of const, and perhaps the more
interesting, is the constant pointer. Functions that
take a pointer to data, have control over that data.
When you call strcpy, for example, you are giving
complete control of your strings to the strcpy
function. You must trust it completely not to wipe
over your original data. Through extensive testing we
know that's not the case, however, if there were a
way the compiler could trap the problem in advance
of the bug testing stage, it would be very much
appreciated. The keyword const lets you do that; and
strcpy has been implemented using it:

char *MyStringCopy (char *pDest, const char 2
*pSrc)
{
char *ptr = pDest;

*pSrc = ‘H';
first letter for a laugh! */

/* Let's try changing the 2

while(*ptr++ = *pSrc++)
;/*empty statement */
return pDest;
}

This function declares that MyStringCopy will not
change the (constant) data to which pSrc points. It is
allowed to change the pointer itself (as we do here in
the loop), but not the data, as doing so will produce
an ‘assignment of read-only location’ message. This
also prevents us from ‘having a laugh’ — either
intentionally, or through a bug in the code.

The placing of the reserved word const determines
whether the pointer is to remain constant, the data
to which it points, or both.

char const *pSrc = pData; /* const 2
before pointer: constant pointer */
const char *pOtherSrc = pData; /* const 2

before char: constant data */

pSrc
*pSrc = ‘A’;

/* Not valid */
/* Valid */

= pNewData;

pOtherSrc /* Valid */

/* Not valid */

= pNewData;
*pOtherSrc = ‘A’;

Like the "pi" example above, if the pSrc pointer is not
assigned at declaration time it cannot be assigned at
any time. It is possible to declare a const without
assigning it a value, but it is undetermined.

It is possible, through type casting, to remove this
protection from constant pointers. However, you
can't do it accidentally, and that's a very good start.

Dark side of the moon

One issue we've yet to deal with is the printf
function. At least, we've yet to
completely deal with it, anyway.
From the start we've used this
function to print data to the
screen; one variable, two variables,
three variables... all using the
same function. Yet, nowhere have
we seen how it does this, since a
function requires a specific
number of parameters. Is it a
special feature? A hack with
printf? Or a figment of our
collective imaginations? Well,
actually it's a feature; called
ellipses.

Ellipses can be used anywhere a
function needs to have a variable
number of parameters. These
parameters can be of any type, but there must be at
least one consistent parameter in the list. In the printf
example, the format string (a char *) is always there —
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it's the other parameters than change, as shown in
Listing 3.

The first point to note is that this feature of the
language needs an include file, stdarg.h. This is
unusual, but not unexpected since the code to parse
each argument are macros (parading as functions) to
start, iterate and end the list of parameters. As none
of these types or “functions” are part of the
language, a header file is needed.

The three dots (...) in the function

definition (line 4) tell the compiler that
we are using ellipses. It is impossible to
add parameters after the ellipses, since
there is no way of knowing if a function
argument was intended for the ellipses, or as a
subsequent parameter. It also follows that there can
be only one set of ellipses per function. Finally, and

we do not know how many parameters have been

passed in, the function must be able to work this
out from the data itself, or by including another
parameter to tell us. Our example uses the
compulsory first parameter to indicate the count.
Alternatively, we could choose to terminate the list
with a -1, for example.

Line 6 declares a variable (va_ptr) that is used to
hold our current position in the parameter list. It is of
no concern to us what type it is, or how it works. For
now let's be happy that it does! This variable is set up
to the start of the parameter list by va_start in line 9
by giving it the last function parameter. Failure to do
so will produce a warning and wrong results!

|
Listing 3

#include <stdio.h>

#include <stdarg.h>

1

2

3

4 int SumAllDigits(int iNumOfDigits, ...)
5 {

6 wva_list va_ptr;

7 int iTotal = 0;

8

9

va_start (va_ptr, iNumOfDigits);
10 while(iNumOfDigits--)

11 iTotal += va_arg(va_ptr, int);
12 va_end(va_ptr);

13

14 return iTotal;

15}

16

17 int main(int argc, char *argvl[])
18 {

19 printf(“Total of digits is %d\n”,2
SumAllDigits(4, 14,6,19,73));

20

21 return 0;

22}

a LINUX MAGAZINE ' Issue 22 « 2002

Each parameter is read in turn with the va_arg
macro (line 11). The second parameter is the type of
data you want to retrieve from the parameter list.
You can retrieve any data type (as the printf function
shows), but it must match the data that exists there.
Again, the data must be able to work out (from itself)
what type it is. The type needs to be given so the
va_arg macro can process the right about of data.

va_end is a tidy up function that should be
included for completeness (it tells the human reader
of the code where the variable argument processing
has finished) but internally does very little.

If you're a really keen student of C, an
understanding of pointers and a willingness to sift
through 200 lines of code is all that's needed to read
the variable argument code (it's written in macros in
stdarg.h but isn't very pleasant).

One to another

Enumerations are a neat way of grouping constants
together with meaningful names. When writing a
snooker game, for instance, we might want to store
each ball colour by name and still have a way of
referencing its point score when potted. We could
use a number of constant variables (like pi above) or
one enumeration. The latter is preferred because it
has greater readability, and lets us use the
enumeration as a type. The other big benefit of
enumerations (over, say, macros) is that all are limited
to block scope. So, if you declare an enumeration
local to a function, that’s the only code that can see
it — the function. In the examples that follow, note
the similarity with the syntax of structures.

enum SnookerBall { red=1, yellow, green, 2
brown, blue, pink, black };

enum SnookerBall NominatedBall;
NominatedBall = yellow;

Here, SnookerBall is the tag for the enumeration. We
can use this as if it were a type (remembering to
prefix it with enum, of course) like int, or char.
However, there is no protection if you decide to
write:

NominatedBall = 7; /* force it to black */
NominatedBall = 23; /* this actually 2
works but is not good coding! */

or
int iBall = Dblue; /* set iBall to 5 */
The values of the enumeration can be assigned

explicitly with an equals sign (as we did for red) or
left to the default case, where each enum has a value
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1 greater than the previous one. If no value is given
for the first enumeration, it is assigned to zero. Once
set, the value of an enum can not change. It must
also be integral.

When using enums as error codes from functions
(which is a highly useful feature) it is good practice to
make zero the default case. Similarly, in cases where
the return value represents a program state, zero is
(by convention) used as the error code.

Naturally, enumerations can be typedefed to
remove the constant need to type enum!

typedef enum { red=10, white=5, spot}
BilliardBall;
BilliardBall iInPlay = red;

Vogue

Interestingly enough, there are two flow control
instructions we haven't fully covered yet. One is the
ill-fabled goto statement, whilst the other affects for,
while and do loops to prevent them from going with
the flow. Its name is continue.

Breakout

With all loops, there will be an exit condition that,
when met, will terminate the loop at the end of that
pass. There is also the possibility to break out of that
loop early with the break statement, as we saw in
part two.

for (y=0;y<20;y++)
{
for (x=0;x<32;x++)
{
printf (“X");
if (x ==y)
break;
}
/* break causes the code to jump here, 2
and continue with the next value of y */
printf(“\n");

Now, break has a cousin, continue, that is also very
useful. She (because continue is female!) will jump

directly to the next iteration of the loop — it will not
pass through the rest of the code, it will not collect
£200, but it will increment the loop counter.

for (1=0;1<10;i++)
{
if (1 == 5)
continue; /* let’'s skip number 5! */
printf (“Mambo number %d!\n”, 1i);
}

Like break, this lets us wield great power from within
our loop, be it for, while or do. As always, with
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power comes responsibility as this provides a means
to make code look very messy indeed. So, as a rule of
thumb, try to only use continue when the alternatives
are worse, and then group the continues at the top
of the loop so it is easy to see the program flow at a
glance, without reading the whole code.

Go now
Finally, for the completists, | had better mention that
C does have a goto statement! | am making no
comment as to its usefulness, legitimacy, or make any
statement furthering the many holy wars surrounding
it! However, as it exists | shall cover to the depth it
deserves!

goto is used by specifying a label to which the
code will jump. This label must be unique within the
function it is used. It is possible to get goto jumping
out of a set of braces, but never into them. It is
impossible, therefore, to jump into a different
function from the one you're currently in.

goto label;

printf ("It never gets here!\n”);
label:

printf ("It continues here!\n”);

Although academics and formal computing students
will say ‘goto is bad’ (in a mantra worthy of Hare
Krishna!), it is not to be avoided outright. There are
some cases where a goto is actually quite good! It is
worth using, like all other features, where the
alternative is significantly less good! Personally, | have
used goto in a couple of large-scale projects (>1
million lines of code) when jumping out of a heavily
nested loop. In many places, especially time-critical
code, it is quicker and easier to use a goto, and
better than writing explicit exit conditions for each
for loop.

for(a=0;a<100;a++)
for (b=0;b<100;b++)
for(c=0;c<100;c++)
for(d=0;d<100;d++)
if (/* some condition */)
goto exit_all_loops;

exit_all_loops:

This may appear less unstructured, but the
alternative:

for(a=0;a<100 && bExit==0;a++)

would add another 100 million tests - something that
should be avoided in most instances. In other cases,
however, it is difficult to justify the use of goto.

Good! That's all done — I'm off for a shower! See
you next time...
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