C:Part13

PROGRAMMING C Tutorial Part 13

Language of the ‘C’

Following on from last month’s article, Steven Goodwin, in this, the final part of our C tutorial, looks at how C can be

unreadable, and why it becomes like that. BY STEVEN GOODWIN

good friend of mine from
University knows all the bad
parts of town. She knows where

the fights will be, and who’ll be dealing
in what, and where. Thing is - she’s a
nice girl! What is she doing knowing
about the dodgy parts of town? Her
answer was my inspiration; knowing
where not to go, stops you from doing it.
So in this article, I will tell you why bad
code is written, how to understand it,
and how to stop yourself from doing it.

Purpose In Life

The easiest case to understand as to why
code is unreadable is where it was
written so intentionally. This could be
because it was written to demonstrate an
interesting (mis)use of the language, or
intended for a programming competition
such as the IOCCC (see boxout). Some
source code will be obfuscated on
purpose to hide it’s meaning along with
any clever, novel, or interesting
technology contained within.

This is sometimes referred to as
‘shrouded source’ where, although the
code is available to the end user
(enabling it to be distributed openly,
needing only a recompile), it is

impossible to read and understand, since
the meaning of the code has been
perverted. This can happen by using
obtuse (or even wrong) variable and
function names (perhaps of a single
letter), the removal of white space, an
over-use of macros or any number of
other techniques. Such code even makes
Perl look readable!

Understanding such code is a
considerable task, and not to be
undertaken lightly. Only in exceptional
cases (i.e. you’re paid to, or the code is a
puzzle you “just have to work out”) is it
worth trying to understand such code.
Your time is better spent solving the
problems yourself, and re-writing it in a
sensible (preferably open), fashion.

In My Defence

For code that is unintentionally
obfuscated, the most common cause is
casual. Code is written in a particular
style ‘just because that’s how a
particular programmer writes” - the geek
equivalent of Finnegans’ Wake! Over
years of programming, people drop into
various habits. Some good. Some bad.
All of them are completely natural to the
person in question, but require more

n Dec02/Jan03 www.linux-magazine.com

thought by everyone else. Let us take a
simple case:

if (fp = $%
fopen("/etc/convert.conf", "r"))
{ /* process the file */ }

This is something we’ve seen before, and
is quite a common structure for opening
a file and handling its contents, should it
exist. We’ve seen it before, so we’re used
to it. If we had not, it might be a
different story. So, what if the expression
was something with which we are
unfamiliar? Here, the use of language is
identical, but the situation is not.

if (n = CountItems())
{ /* Is this supposed to check2
the integrity of 'n'? */ }

This unintentional obfuscation can show
its roots in a number of places, but
because they are all quirks of the original
programmer (which you are unlikely to
know on a first hand basis) and so it
gives you two things to think about, not
one. For example, a programmer may
have come from a different language to
C, and was forcing his ideas into ‘C’ and

not making use of its
strengths as a

C Tutorial Part 13 PROGRAMMING

Listing 1: An intentionally obtuse program

putchar(

language. Or they ftdefine

might be from the Jtdefine

‘old school’ where jdefine
they have either jdefine
become such good

friends with their ,

compiler that they -

know what shortcuts =
to take (for better - -
performance, say), ,

or they have been

burnt by broken soft-

ware and forced to
write in this unnat-

ural manner, working

around problems in the tools. Over time,
this behaviour becomes second nature to
the programmer - but not the reader -
and so it appears more complex that it
really is.

Also in the old school programmers’
“box of tricks” will be a number of
language features that may not be appre-
ciated by novices, although they’ve no
doubt learnt. Probably by rote. An
expression may be empty, making the
following statement reasonable:

if (a && !b && (c||d))
else

printf("Doing
something!");

The alternative would require a lot of
negative logic and is generally more
difficult to understand. The reader may
care to study De Morgan’s Theorem on
such matters.

Listing 1 uses three tricks from the
box: 1-variables may begin with (and
include) an underscore, 2-global
variables are guaranteed to be initialised
to zero, and 3-integer variables can be
declared without the reserved word ‘int”.
The latter is only true, however, for non-
ANSI conforming code.

Living In A Box

In most cases, causal obfuscation just
condenses code into a smaller area. This
happens for a number of reasons;
perhaps the algorithm or method is well
known and it feels natural or ‘obvious’
for the programmer to write it as such
(like we saw above). Or perhaps they

were so focused on the task, it did not
concern them to separate each step of
the process, or the coding standards to
which they were working limited them
to 80 characters on a line - and they
were already on 75! When this occurs
(and you want to understand the code)
you may have to expand each expression
into its individual components. Consider
the conversion table example from part 5.

for(i=0;i<sizeof(ConvertTable)/2
sizeof(ConvertTable[0]);i++)

{ /* handle each element2

from the table here */ }

If we take each part of the expression
and represent it on it’s own then, like the
proverbial school bully, it is no longer
threatening, and easy to understand
because each part is so simple we can
give it an obvious and easy to
understand variable name.

int iSizeOfWholeTable = 2
sizeof(ConvertTable);
int iSizeOfEachElement = 2
sizeof(ConvertTable[0]);
int iNumberOfElementsInTable = 2
iSizeOfWholeTable / 2
iSizeOfEachElement;
for(i=0;1i<iNumberO0fElements2
InTable;i++)
{ /* handle each element
from the table here */ }

The conditional operator (the ? and :
symbols) is a very quick way of
condensing four lines of an if-else
statement into one. Some people do this
because they think that it compiles into

smaller code, and therefore will take less
time to execute! While that can be true
at the machine code level, it is not the
case at the high level of C. Perhaps they
are used to interpreters where this can
be true. With compiled languages it is
not an issue, especially with the
optimisers currently in use.

In most cases, the two examples above
will produce the same code, but
invariably people will believe the
second version is somewhat quicker.
Unfortunately, as a language, C is very
supportive of dense syntax since an
expression can be a number of things,
such as a function call, a parameter or a
piece of algebra. As expressions feature
throughout the language, it is possible to
include them in places you would not
perhaps expect.

Sometimes decomposing an expres-
sion is not enough on its own. You have
to look more broadly at the programs
structure and operation.

iScores[(iP1y&2)>1]1++;

This simple piece of code could be
broken down into parts (the bitwise
AND, the bitshift and the increment) but
that would not gain us much. Instead of
looking at how it does it, let’s look at
what is produced by re-writing the AND.

if (iPly & 2)
/* The numbers 2,3,6,7, etc 2
make this true. i.e. 4nt+2, 2
4n+3 for n>= 0 */

t =2;
else

t =0;

www.linux-magazine.com Dec02/Jan 03 “

Speed of execution

Faster? Slower?

if (a) x=a?1l:2;
w =13

else
X =2;

iScores[t>1]++;

Now the expression is very simple
(especially since 2 >1 is always 1, and
0>1 is 0). In the context of the whole
program (not shown here for space
reasons!) we know that iPly is the
number of the players, and ranges from 0
to 3. It therefore seems reasonable that
this line converts a player index (0 to 3)
to a team index (0 or 1), with players 0
and 1 being on team 0, and 2 & 3 being
on team 1.

The most natural scenarios for com-
pressed code occur in string
manipulation, where a string copy can
be written:

while(*pSrct++ = *pDest++);

includes an empty expression for good
measure! The reader may care to deduce
a compressed form of the strlen function.
The authors record is 27 characters for
the function body.

Wide Open Spaces

It is not just the code that may confuse,
but the spaces in between the code, too!
Il formatting can occur anywhere,
which is why it is best to find a style of
layout that you like, and stick to it. If you
work for a company, this style may be
dictated to you.

Otherwise, look at other peoples code
and choose one. If your layout is clear
and easy to understand it should not be
considered ‘wrong’. Similarly, there is no
‘right” way, and no good coder should
tell you that there is. They might try to
convince you to change, however, but
that is part of a holy war that is best to
avoid if possible!

while(i<0)
1555

printf("i=%d\n", i);

Since there are no braces after the

PROGRAMMING C Tutorial Part 13

A loop with break and/or continue
statements littered throughout is going to
be more difficult to follow than one
where they have been grouped together
near the top. Matching else statements to
their respected if’s can also be tricky.
The rule in ‘C’ is for the else to match
the last unmatched if.

if (a)
if (b)
if (c)
printf("Is c true?");
else

printf2
("Which is true? a, b, or c?");

So in this example, the else matches the
‘if (c)* line, not the ‘if (b)‘ as the
formatting suggests. In addition, code
like this should be simplified to only rep-
resent only the cases we’re interested in.

if (a && b)
{
if (c)
printf("Is c true?");
else
printf2

It uses the simple fact that strings ‘while’, this loop will only iterate ("Which is true? a, b, or c?");
terminate with a NUL - which is the single ‘i--° instruction. However, }
numerically equivalent to FALSE. It also the formatting implies something
else, which is not The code should also be correctly
Listing 2: Compressing spaces good. formatted, preferably with braces, since
0 MR e, cher angyEIN wisemed You must editors can easily find the next (or
char c="r"doublle X1, v,y t=0, 078 (=22, x, consequently previous) occurrence of a brace so you
B2, 83 ol (e 0 YD (e (el B il beware of the ‘C’ can determine which code is attached to
2.0F,%2=0.8): (c=="2")7 c=0, printf("%f\ empty expression, which ‘if. When using such a layout, its
2.9 x1.y1.x2,y2): (C < gRCO4A8) where a ;* on it’s format aids the understanding of the
Tx=x1,y=y1,*(c>'3" &&c< " ;" 2uy1: &) own is valid, and code, and does not hinder it, so the
=(y2-y1)/3.%(c>' 6" 8&c< "Logyl what issues it can obfuscation is less pronounced. One
(&) 4=(y2-y1)/3, *((c — g raise. Imagine: style point I use is that if the ‘true’ part
| [c+3=="8"| [c+3 +3== '8 28x1 of a condition uses braces, then so does
L&))4=(x2-x1 Y 3.%((c while(i<0); the ‘false’ part. Formatting can also
——9"| [cH3== 90| |c i--; cause problems with the understanding
+6=="9" 28x1:
ﬁzszxz,m &X%,i;i Listing 3:Print “Daft Jacko abhors Tux”
x1+(x2-x)/3, y2 =y1+(d[256]={0x200000, 0x8000000, 0x10000,
y2-y)/3:(c=0);for(y= y23y>= 15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0
yl&&c;c=1,y-=(y2-y1)/r, putchar ,0,0,0,0,0,0,0,112,36,0,1,4,32,0,96,0,68,137,0,8} ;
("\n")) for(x=x1;x<=x2; x+=(x2-
x1)/q){a=b=c=0; while (++c&& (a=(t main(story) {
=a)*a)<4&&(v=b*b)<4)a-=v-x ,b=y+b*2*t; while(d[0]<d[1]) 2
putchar("#@XMW*N&KPBQYKGSR" "STEEVXHOUV" *d+=((d[((((*d>16)-26)&0x1fF)>1) 142
"CTOLI%IL={}eou?/\\ | ITi+~<>_-M\"15:0, . "L (*d&d[21?7240:15)))>(*d&d[21?4:0)&(1<<(*d>25))?2
c?c>2:63]1); 1} while((c=getchar ())!="x"); putchar(((*d>16)&0x1ff)),0x10000:0x10000;
return 0;/* Mandelbrot - S.Goodwin.2001%/} }

m Dec02/Jan03 www.linux-magazine.com

of expressions that use (or even rely on)
precedence. Stepping back to the
example I gave when discussing
precedence, notice how ill formatting
would confuse the issue.

ans = 10*x / 5%*y;

Clever Trevor

Another case of obfuscation is where the
code is cleverer than it needs to be. This
can manifest itself in a couple of ways.
Consider a loop to compute the sum of
every number between 1 and 100.

int iTotal = 0;
for(i=1;i<=100;i++)
iTotal += 1;

This is simple, understandable and very
straightforward. =~ However, if the
programmer knew about Gauss, he
might have written:

for(i=1;i<=50;1i++)
iTotal += 101;

or even,
iTotal = 101 * 50;

This works because a mathematician
named Gauss (1777-1855) deduced
that working the arithmetic from both
ends at once reduces the sums
complexity. It becomes a list of 50 sums,
all of them equal to 101, because
1+100=2+99=3+98 and so on. Very
simple to understand when you’'re
writing it, but much more difficult to
read; especially in the general case. If
each step of the process is given a
comment then there is some salvation -
but there rarely is! This type of
obfuscation requires you to understand
the language used to implement the
problem...and the method used to solve
the problem. Using mathematical
identities is often necessary to improve
performance of software, but you should
always document those methods so
others can understand the code to make
enhancements (and bug fixes) easily.

Code can also be too clever outside the
field of mathematics, and may rely on
assumptions that are implicit in the code
or data.

J =0
for(i=1;i<100;1i++)
if (/*some condition*/)
RENEE

This loop finds the first case where the

condition is true, and produces the

position in the variable ‘j. This a good

example of bad coding because:

1) The variables are not meaningful

2) It relies on ‘i’ never starting at 0

3) It over-condenses the code without a
comment

Again, splitting the conditional ?: will

help understand this.

if ()
35

.
Il

else
J=1;

So, if 9j” is non-zero, nothing will happen
and j will remain unchanged. Otherwise
(i = 0) it will be assigned to the value of
‘. At this point it is no longer zero
(because of the assumption that i always
starts at 1), and so is unaffected for the

rest of the loop.

Bright Lights, Big City

Trying to out-compile the compiler can
also make code unreadable. This is
where the writer has learnt / discovered
/ worked out how the compiler (or even
CPU) will handle the code, and so has
written parts of the program in such a
way to produce code that gives better
performance. This has the same
symptoms as code that has been
intentionally obfuscated, but suffers
from the fact that not even the original
author knows why it had to be done in
that particular way. The irony is that any
performance gained from compiler A is
not valid on B (or even between versions
of the same compiler)! One good
example here is the code:

tmp = *ptr;
for(i=0;i<1000;i++)
ptrlil = 0;

Here the ‘tmp’ variable is never used,
and appears to be redundant, so one
might be tempted to remove it. However,
on processors such as the Pentium,
reading the memory location at ‘ptr’ may
cause that section of memory (8K or so)

C Tutorial Part 13 PROGRAMMING

to be brought into the cache. Then,
when the loop writes to memory, it does
so to the (fast) cached version, and not
main memory, as it might have done
without the ‘tmp’ line.

Billericay Dickie

The flip side of code trying to be too
clever is code that is not clever at all.
This could be because it uses the wrong
method, but gets the right answer, or
uses the right methods but in the wrong
cases. Consider this example I found in
some code on a Windows machine.

len = strlen(szFilename);
szFilename[len - 41=0;

It gets the right answer (most of the
time) but uses the wrong method!
The intention was to remove the
file extension from szFilename, before
concatenating a different one onto the
end. This is confusing because that’s not
what it actually does: imagine if the
filename did not have an extension!

A similar case happens with
comments. Comments are good unless
they disagree with the code. Or the
variables used within the code are given
names that do not apply to their job.
Neither happens when writing a pro-
gram, but as it changed and new features
are added, the comments are not
updated, and a ‘Lastltem’ variable is
now used (or even re-used) as a count of
the number items - and slowly the code
becomes less clear than it once was.

Both situations should be rectified by
making the code do what it is supposed
to, in the way that it is supposed to do it!
Removing a filename extension means
taking all characters after the dot - so
look for the last dot (I've even seen code
that removed the first dot, causing other
problems!) and remove those characters.
If youre writing an interactive
application and you notice there are 12
characters after the dot (i.e. it probably
does not have an extension, just a dot in
the name) you can always report the
error to the user and let them confirm
the action.

The ‘write as you mean’ rule is the
best way to code, ensuring both man and
machine understand what’s going on.
Consider the 1 to 100 summing loop
above. If we’d written it as,

www.linux-magazine.com Dec02/Jan 03 m

End Note Sidebar

As this marks the final part of ‘Language of
the C’, 1 would like to take the opportunity to
thank a few people. Notable John Hearns for
encouraging me to write it, John Southern &
Colin Murphy for letting me write it, Alan
Troth for reading it (and forcing me to re-
write it),and TULS for the beer and curry!

for(i=0;i<100;1i++)
iTotal += i+1;

This may fit in with C’s zero-indexing
policy, but it does not make (as much)
sense because the meaning is lost. The
number zero is not part of the question,
so it should not be integral to the finding
of the solution. And do not use the
excuse of ‘code will run slow’ when
cutting corners, either. As Knuth once
said, “Premature optimisation is the root
of all evil”.

Old Before | Die

Some programs are difficult to read
because of their over-reliance on the C
pre-processor. Especially by beginners
who have come from Pascal, say, and
would still rather type ‘begin’ instead of
‘{* to start each code block. It is not
unknown for them to start each file with:

#define begin {
ftdefine end }

This, although quaint, is ultimately
confusing to the reader (since the word
begin looks like it should be a function
or a variable), and prevents the author
from moving away from Pascal.

They will never have to think in
C and so are likely to implement
substandard solutions (that are by
their nature more difficult to read)
because they are not considering (and
working to) the strengths of the
language. In these cases, you need to
pre-process the source files to expand
the macros into something that looks
more like C.

In extreme cases people may be
working with programs that have been
converted, line-by-line, from another
language into C.

These conversions are often the
technical equivalent of badly translated
Kung Fu movies - the words may be

correct, but they do not make sense in
context! Depending on the importance of
the software (and the salary involved!) it
may be worth re-writing them, not from

the source, but from the original
algorithms.
Old Red Eyes is Back

One case of obfuscation that happens
(but rarely) involves old code. When
software has been ported from an old
system, or you are working on an old
Unix system, there may be some
historical features that can be confusing.

The programmer might have used
functions that no longer exist in the
standard libraries, or those that have
since been replaced or renamed. One
example is strchr.

This used to be called index, and
might exist in some code. Now, since
this function has not been documented
for many years one might be tempted to
look for it outside of the standard
libraries, and not find it.

In extreme cases, you might be work-
ing on a compiler than supports features
of the old K&R style of C. On these
systems, the language was much
younger than it is now, and supports
strange syntax such as:

int x 1;

Which is actually a simple declaration
and assignment that we know as:

int x=1;
Similarly, code like
X == 1;

Would (on an ANSI C compiler) assign
minus one to x. However, in the ‘olden
days’, it would decrement x by 1,
because =- was the original form of -= .

With Linux being comparatively new,
this should be a rare case, especially as
gcc does not support it.

The End Of the World

Despite the fact that this series has
taught the C language and its many
(varied) wuses, it is still possible to
construct legitimate code that looks
wrong, strange, or confusing. My
favourite example of this is Duffs Device.

n Dec02/Jan03 www.linux-magazine.com

PROGRAMMING C Tutorial Part 13

register n = (count + 7) / 8;
/* count > 0 assumed */

switch (count % 8)

{

case 0: do { *to = *fromt+;
case 7: *to = *fromt+;
case 6: *to = *fromt+;
case b5: *to = *fromt+;
case 4: *to = *fromt+;
case 3: *to = *fromt+;
case 2: *to = *fromt+;
case 1: *to = *fromt+;

} while (--n > 0);

(Copyright 1984, 1988, Tom Duff)

(The ‘to’ address is mapped to a device,
and therefore it does not need to be
incrementedwithin the program).

Any language powerful enough to
produce original code, is also (by it’s
very nature) powerful enough to
produce oddities or quirks of use that
were not considered when originally
designing the language.

No language course could ever hope to
cover every single obtuse case of syntax
in existence - and there’s always one
programmer who will find more evil
ways of abusing the language. In these
cases, you have little choice but to work
through the code, line by line, function
by function, understanding what the
compiler would do in these situations
and mimic it. This technique (called dry-
running) is carried out by language
lawyers to understand and demonstrate
vagrancies of a particular language. And
you should to.]

The International Obfuscated C Code
Contest. A yearly competition to (ab)use Cin
the most esoteric manner possible.The
winning entries are somewhat scarier than
the ‘simple’examples given here.
www.ioccc.org

The language of ‘C’ has been brought
to you today by Steven Goodwin and
the pages 68—72. Steven is a lead
programmer, who has just finished off
a game for the Nintendo GameCube

console. When not working, he can

THE AUTHOR

often be found relaxing at London
LONIX meetings.

