
under any modern Unix.To build Splint
from its source tarball where <version>
is a string such as 3.0.1.6

$ tar -zxvf splint-<version>.tgz
$ cd splint-<version>

start the actual build

$ make

this stage requires root privileges

$ make install

If you have any difficulties or problems
building from the source, there is a
binary package available that runs
straight out of the box with no external
dependencies, and is available for Linux,
FreeBSD, Windows and Solaris from the
Splint homepage.

I’ve got two legs
Splint has to be able to read and
parse the code in the same manner
as a compiler would. So, if you have
particular include directories that need
to be used, you can either add a
command line switch (as you would
with gcc), or use the environment
variable LARCH_PATH, mimicking how
a Makefile would handle it.

For example, to add an include
directory for a single run:

$ splint -I /usr/src/myprojectU
/include sptest.c

Or, to make that directory available
on each run of splint in this terminal
session (if using ‘bash’), we use:

$ export LARCH_PATH=/usr/srcU
/myproject/include

To make this persistent across sessions
add the line to your .bashrc or .bash_
profile file, depending on your setup.
Header files in the same directory as
your source files do not need to be
explicitly referenced as they are included
by default.

You can test the install by typing:

$ splint --help version

A pleasant splint banner indicates that
you now have a fully working install of
the package. Now let us look at what it
can do for us by running it with a simple
sample program.

You’re the doctor of my
dreams
We have, below, the complete source
code that we are going to use as our test
bed for splint. Please note this code is
not production quality, and deliberately
contains bugs. It does, however, compile
100% cleanly with the strict gcc settings
of -Wall, -ansi and -pedantic.

Program errors annoy users and
hinder development. Software that
takes a month to write will often

take just as long again to debug and fix
before the end product is deployed.
Compiler warnings, although useful, do
not go far enough to prevent a number of
bugs that should be trapped at a much
earlier stage.

Splint (formally called lclint) is a
semantic checker which reads and
understands your code. It can look at
what you have said – and determine if
that’s what you meant.

In contrast, the compiler will point out
show stopping syntax errors (such as
undefined variables), which prevent an
executable from being built. Many
semantic errors can be caught by turning
on all compiler warnings, but this is still
not enough in most instances. (See Box
1: Swear and curse).

I’m a lumberjack…
Splint is available as a binary, or source
package which can be downloaded from
www.splint.org, with the current version
(3.0.1.6) weighing in at around 1.5 MB.

The source is built using the standard
GNU tool chain and should compile

Whilst peer review is the best method of ensuring quality code, automated

tools can also be employed. In this article we look at such a tool, and show

how it can be used to improve your code.

BY STEVEN GOODWIN & DEAN WILSON

Quality Code

Walking Upright

76 February 2003 www.linux-magazine.com

Automated toolsPROGRAMMING

Splint can be a very exacting program. As an
example of this, please note the following
code sample:

#include <stdio.h>
int main(int argc, char **argv) {
int a=0;
if (a = 4);
return 0;
}

This code has no warnings when compiled
with ‘gcc test.c’, but succeeds in detecting
one warning when all compiler warnings
are enabled with -Wall. Splint, in contrast,
will pick up a grand total of 5 errors (or
possible errors) in the same piece of code.
Image the potential minefields present in
a larger project!

Box 1: Swear and curse

Steven Goodwin is a Lead
Programmer who has just finished
his fifth computer game. He has had
more bugs than you’ve had hot
dinners…but he claims they all
belong to Dean Wilson.

Dean Wilson works in Perl, C and shell
scripts at WebPerform Group Ltd in
the City. His bug count currently
exceeds the GNP of Japan…but he
claims they all belong to Steven
Goodwin.

T
H

E
 A

U
T

H
O

R
S

the different categories of problem that
splint produces.

One of the first things to spot are the
two ‘Parameter … not used’ errors on
line 28, one with argc as the unused
parameter, and one with argv. Both
variables are present in our main()
function, but neither are used. There is
a good reason for this (in our case); our
program doesn’t use them.

Does this mean we can ignore this
error? Only in this specific case. In
virtually every other situation an unused
parameter means there is some
important data being orphaned inside
the function. This should, invariably, be
corrected. In this instance we should
amend our source code to tell
maintenance programmers that we are
not using these parameters intentionally.
For example:

argc = argc;
argv = argv;

Splint will no longer report this warning
for argc and argv, although it will be
reported for other unused parameters

in the program. If you wish to ignore
this type of error wholesale (i.e. in every
problematic occurrence of the code) you
can ask splint to ignore this type of error
with the command:

$ splint --paramuse test.c

After running this command on the
original source you will notice there are
now only 12 warnings present, with both
of those in the ‘unused parameter’
category having been removed.

Most of splint’s warnings are grouped
into such categories that can be ignored
with a command line switch like
‘--paramuse’. This allows you to ignore
specific types of error if you either don’t
agree with them, or they are not
applicable to the product you are
working on. Working through the error
list above you should be able to pick out
a number of such switches.

There are over one hundred different
flags available, and so would be
impractical to list them all here. You can
review the categories available by using
the command:

$ splint --help flags

The individual categories (memory,
pointers and parameters, for example)
can be shown with the equally simple:

$ splint --help memory

It’s fun to charter an
accountant…
Once the simpler errors have been
removed, it is a good idea to progress
through the list, solving each error in
turn. After a problem area has been
detected, briefly read the remaining
problems to see if your fix could
adversely affect other areas of the code.

When you are happy with your
change, re-run splint to check that the
error has gone, and no other warnings
were produced as a result of your new
code change.

Looking at our output, we see there’s a
problem with line 10.

t.c:10:19: Function parameter
array declared as manifest array
(size constant is meaningless)

$ gcc -Wall -ansi -pedantic U

test.c

Although these settings may appear
overly conservative, in a real-world
scenario where code is critical, or ported
across multiple systems, these settings
would be the norm (see Listing 1).

The program uses Numerology to
calculate a mystical number which
is derived from a persons name. This
number can be used to tell your fortune,
describe your personality, or demon-
strate your character traits (like health,
wealth, and gullibility). Allegedly!

So there’s our code. 46 lines of code. 0
warnings. Can there be anything wrong?
For starters it doesn’t terminate – it
appears to spin. So we need some extra
help tracking down the error. Let us run
splint and look for further clues…(see
Listing 2)

All things dull and ugly
Wow! 14 warnings for a ‘perfect’ piece of
code. Let’s break these errors down to
see where they come from, and why. The
experienced reader may care to notice

78 February 2003 www.linux-magazine.com

Automated toolsPROGRAMMING

1 #include <stdio.h>
2
3 int mapping[] = {
4 1, 1, 4, 2, 4, 4, 2, 1,
5 5, 4, 4, 2, 1, 5, 2, 5,
6 5, 5, 4, 3, 3, 3, 3, 2,
7 5, 5,
8 };
9
10 int num_calc(char array[11])
11 {
12 int i;
13 int total=0;
14 char c;
15
16 for(i=0;i<sizeof(array)/

sizeof(array[0]);i++)
17 {
18 c = array[i];
19 if (c >= 'A' && c <='Z')
20 total +=mapping

[(int)c-'A'];
21 else if (c >= 'a' && c

<= 'z')
22 total +=mapping

[(int)c-'a'];
23 }
24

25 return total;
26 }
27
28 int main

(int argc, char**argv) {
29 char message[11] =

{"Mystic Meg"};
30 unsigned int num;
31
32 if ((num = num_calc(message)))
33 {
34 /* reduce until its negative

*/
35 do
36 num -= 10;
37 while(num>=0);
38
39 /* Since we've overshot, add

the last ten back*/
40 num += 10;
41
42 printf("The magic number for

%s is %d\n", message, num);
43 }
44
45 return 0;
46 }

Listing 1: Sample code

This tells us we are implying, by
including the square brackets, that the
function takes an array as an argument.
It doesn’t. ‘C’ can not pass arrays; only
pointers to the start of arrays. We should
therefore correct the code thus:

int num_calc(char *array)

Although not a problem as far as the
compiler is concerned (both versions
produce the same code), a maintenance
programmer might imagine that this is
actually trying to pass an array, and
could be liable to introduce errors based
on this incorrect assumption, as we will
see later.

Gifts for all the family
Upon re-running splint we notice that
we’re down to 10 errors. Great, you
might think. We’ve only made one
(benign) change, but it has produced

an unexpected side effect – it hides a
potential error. This is another good
reason why you should make changes
incrementally to the code (as you would
when the compiler produces errors) and
not in bulk.

The error we lost concerned the sizeof
operator in line 16. By referring to the
sizeof a pointer, we are only considering
(on a 32 bit machine) 4 bytes. By naming
the pointer as if it were an array, the
coder implied it would be 11 bytes long
(the array size). This flaw can be fixed
by re-writing the code correctly with the
strlen function.

for(i=0;i<strlen(array);i++)

Our next error involves a type mismatch.
Instead of blindly replacing the type we
must make sure there are no com-
plications. In this example, the ‘strlen’
function returns a value of type ‘size_t’.

This is a system-defined type (from
malloc.h) which has enough capacity
to store any possible memory location
that the system could address. It is -
sometimes referenced as the size of the
‘sizeof’ operator.

It is more ‘correct’ to use size_t
because the loop is intended to reference
an arbitrary array which could, in
theory, extend across the whole memory.

Changing the type here does not cause
us any problems, especially since under
our (32 bit x86) machines it is only
a change in sign (from signed to
unsigned), but it is only true in this case.
Changing signs arbitrarily is a dangerous
comfort with which to surround
yourself. You will see the proof of this
point shortly.

Our next problem is one of types,
which occurs twice (once at line 20, and
once on 22): we use a char to reference
an integer array element. Since ‘C’

79www.linux-magazine.com February 2003

PROGRAMMINGAutomated tools

$ splint t.c

Splint 3.0.1.6 --- 23 June 1912

t.c:10:19: Function parameter
array declared as manifest array
(size constant is meaningless)
A formal parameter is declared
as an array with size. The size
of the array is ignored in this
context, since the array formal
parameter is treated as a
pointer.
(Use -fixedformalarray
to inhibit warning)

t.c: (in function num_calc)
t.c:16:18: Parameter to sizeof is
an array-type function
parameter: sizeof((array))
Operand of a sizeof operator is
a function parameter declared as
an array. The value of sizeof
will be the size of a pointer to
the element type, not the number
of elements in the array. (Use
-sizeofformalarray to inhibit
warning)

t.c:16:10: Operands of < have
incompatible types (int,
arbitrary unsigned integral
type): i< sizeof((array))
/sizeof((array[0]))

To ignore signs in type
comparisons use +ignoresigns

t.c:20:21: Incompatible types for
- (int, char): (int)c - 'A'
A character constant is used as
an int. Use +charintliteral
to allow character constants to
be used as ints. (This is safe
since the actual type of a char
constant is int.)

t.c:22:21: Incompatible types for
- (int, char): (int)c - 'a'

t.c: (in function main)
t.c:29:20: Initializer block for
message has 1 element, but
declared as char [11]: "Mystic
Meg" Initializer does not
define all elements of a
declared array. (Use
-initallelements to inhibit
warning)

t.c:32:6: Assignment of int to
unsigned int:
num = num_calc(message)

t.c:32:5: Test expression for if
not boolean, type unsigned int:
(num = num_calc(message))
Test expression type is not
boolean or int. (Use
-predboolint to inhibit warning)

t.c:37:8: Comparison of unsigned
value involving zero: num >= 0

An unsigned value is used in a
comparison with zero in a way
that is either a bug or
confusing. (Use -unsignedcompare
to inhibit warning)

t.c:42:53: Format argument 2 to
printf (%d) expects int gets
unsigned int: num
t.c:42:38: Corresponding format
code

t.c:28:14: Parameter argc not used
A function parameter is not used
in the body of the function. If
the argument is needed for type
compatibility or future plans,
use /*@unused@*/ in the argument
declaration. (Use -paramuse to
inhibit warning)

t.c:28:27: Parameter argv not used
t.c:3:5: Variable exported but not
used outside t: mapping
A declaration is exported, but
not used outside this module.
Declaration can use static
qualifier. (Use -exportlocal to
inhibit warning)

t.c:10:5: Function exported but
not used outside t: num_calc

t.c:26:1: Definition of num_calc

Finished checking --- 14 code
warnings

First output from splint

error is what appears to be a simple type
mismatch. However, remembering what
we said earlier about changing types
arbitrarily, we take a closer look at how
this variable is deployed.

First off, the num_calc function
returns an integer, and tries to assign it
to an unsigned integer. So which should
be changed, the function or the assign-
ment? Since the function may return an
error code as a negative number in the
future it’s not unreasonable to assume it
should be a signed int.

The next problematic line (37) shows
us the real crux of the problem: an
unsigned value can not be negative by
definition. This means the ‘<= 0’ can
never be true, which is the cause of our
programming hanging.

Doh! Why didn’t the programmer spot
this? More to the point, perhaps: why
doesn’t gcc? An analysis of the algorithm
shows us that the number needs to
become negative in order for the loop to
terminate (lines 35-37), and so we
conclude that a signed integer is the way
to go. Checking the third of these errors
we notice that the printf format specifier
is also wrong, confirming our suspicions.

Finland has it all
The last two errors are also connected.
They both reference exported identifiers:
one variable, one function. In ‘C’, it is
possible to reference variables from one
file in another by extern’ing them.

extern int mapping[];

While this is not necessarily a bad
thing, it allows another file to corrupt the
mapping data (or call our num_calc)
without our permission. Generally, if the
function is private to that file – make it
private with the keyword ‘static’. This,
again, explains to the compiler what we
mean, and not what we say.

Although it’s a simple change, and
may appear to some as inconsequential,
it is very important and should not be
ignored and allowed to fester.

…buttered scones for tea
And there you have it. A completely
debugged and lint-free program. It has
not taken a particularly long time to do
it, but has provided a much stabler base
from which to work, and exorcised many

bad style demons that could confuse
maintenance programmers in the future.
This newly found confidence in the code
will encourage further features to be
added, and old ones enhanced.

As you can see, splint enables
programmers to detect bugs before they
become problems. It should find its way
into the development cycle, along with
-Wall as part of the build process, to
shorten the bug-fix cycle, and so
enabling developers to spend more time
on new features. ■

allows chars to do this (using the rules
of promotion), there is not really a big
problem with the code.

Instead of passing an extra switch
to the splint program, we shall formally
fix the code with type casts. This, in
addition to giving us a nice safe piece
of code, allows the program to run
under splint without warnings, even if
someone else runs it without the
command line switches.

Finland. Finland. Finland.
The next three issues are very simple so
we shall cover them together (although
in practice we actually stepped through
each one in turn). We have (in order),
an initializer with extraneous braces
(29), an assignment inside a conditional
(34) and (on the same line) the test
expression itself which resolves to a non-
boolean answer.

The braces problem does not show up
under the compiler because strings in ‘C’
are simply arrays of characters, so an
array of strings is just a bigger array
(with NUL terminators at the end of each
string). If the array were used more
extensively, however, problems would
soon arise.

The conditional assignment does not
show up as a warning under gcc because
there are two brackets around the
expression. This trick, to stop compiler
warnings under gcc, doesn’t work under
splint. And, because it should be lint-free
we shall amend the code accordingly,
thus we can use:

num = num_calc(message);
if (num > 0)

{
... etc ...

The ‘> 0’ not only provides a boolean
result, but emphasizes the correct result
we seek. Although the function does not
currently return values less than zero, if
it did (for error conditions, say), these
would be picked up correctly too.
(Remember that ‘C’ refers to all non-zero
numbers as ‘true’).

Another quick run of splint and we’re
down to 5 warnings.

Some things in life are bad…
The next problem actually causes three
issues. Sequentially speaking, the first

80 February 2003 www.linux-magazine.com

Automated toolsPROGRAMMING

Whilst splint can highlight many of the
semantic mistakes that gcc can not, it is
by no means a stand alone or infallible
program. Because it doesn’t have to
generate program code for the source,
it can make (occasionally incorrect)
assumptions about other parts of the code.

For example, it can miss situations where
functions are used without format
declarations.This can be fatal in situations
where the return type of the function is a
floating point number, and the implicit
declaration will be deduced as an integer:
which is incorrect. Fortunately, the compiler
will spot this particular instance – so you
must not be lulled into a sense of false secu-
rity by running with lax compiler options.

Sometimes, the humanistic element of
coding can also cause problems Splint is
unable to detect; consider the source
fragment below. Not only is Splint unable to
find the errors, but usually a human being
will also fail to notice them.

int a = 10l;
int b = 020;
int c;
c = a/b;
Here, the result of c is not 101, but 0! This is
because the value ‘101’ is actually ‘10l’, with a
lower case ‘L’at the end.The visual
difference between ‘1’and ‘l’ is small, and
very difficult to ascertain.This should be
handled by enforcing coding standards that
require the use of an upper case ‘L’, and
commenting when such numbers are used,
to ease the readability.

The same is true for numbers which are pre-
fixed with zero, this will cause the ‘C’
compiler to treat them as octal numbers.
This gives us, essentially:

int a = 10;
int b = 16;
So naturally, the integral result of 10/16 will
be zero, causing a fairly severe bug.

Box 2: Never be rude

