
loadshome.cfm?f=2&wf_id=45. You do
not need to rush for Konqueror just yet
however, as I shall be describing the
pertinent parts here.

Tall Trees In Georgia
Every 3DS file is split into chunks,
and each chunk is part of a hierarchy.
This means that each chunk (a block
describing an individual piece of data –
an object’s colour, for instance) can have
one or more child blocks ‘inside’ it, in
much the same way as XML or HTML
embeds tags.

Unlike XML, it is a binary format. The
parent-child relationship of chunks are
conceptually no different to that of the
Linux file-system. You can sneak a peak
at the hierarchy of a sample 3DS file in

Figure 1 (p72) to see how this will look
for our program.

Chunked formats allow the vendor
(along with standards bodies, other
developers, and end users) to add
custom chunks into the format with-
out breaking other applications; it
becomes both forward, and backwards,
compatible. Because it is a hierarchy, an
application may omit or include entire
sub-trees of data depending on how
relevant they are to the file, or program
in question.

The application reading the file can
then ignore chunks (in their entirety) if
they don’t recognise (or need) one, and
continue with those that they can, or
want to, read. This also makes it easier
to write a parser (which in turn ensures

With the possible exception
of the 16 bit demo scene,
nothing ever uses a spinning

cube. We want rockets, tanks, people –
anything, in fact, except spinning cubes!

In this article we look at how to
move away from primitive, hard-coded,
data, and learn how to resource and
handle external assets – to use the geek
vernacular, it becomes data-driven. As
an example, we’ll be developing a 3D
mesh viewer (using 3DS files – see
Box 1) from first principles, starting with
a look at the file format, and step-
by-step learning how to effectively and
efficiently bring it into memory and
manipulate it.

I Owe You Nothing
Before we can load a file we need
to understand it. Whilst it is usually
desirable to use a pre-written library, it
would make for a very short article! We
are therefore only re-inventing the wheel
for the purpose of education.

However, I usually find writing a file
loader helps me not only understand the
format better, but allows me to make
better use of the data I have to process.
For all data-driven work, I recommend
having good documentation and samples
to hand – even if you have to pay money
for it!

The documentation we shall be using
to describe the format can be found at
http://www.whisqu.se/per/docs/graphics
56.htm This is a simplified version of the
(now released) specification from http://
sparks.discreet.com/downloads/downU

Whenever we start writing a piece

of software, we usually use data that’s

been hard-coded into the program.

Nearly every 3D demo features a

spinning cube.

BY STEVEN GOODWIN

Importing Assets

Data Driven By You

70 February 2003 www.linux-magazine.com

CPROGRAMMING

a greater penetration for the format)
since you only need to handle the
elements you’re interested in.

This predictable structure encompasses
unpredictable data, that makes self-de-
scribing formats like this and XML loved
– and others, like that of Microsoft Word,
hated!

Head Music
A 3DS file chunk begins with a small
header describing the data: an ID, and its
size in bytes. This is then followed by
the data itself (see Table 1). It really is
that simple! Every step of the process
involves the same set of operations:
• Read two bytes to discover the chunk

ID
• Read four bytes to discover the size
• If we understand what to do with the

chunk, process it!
• If we don’t, skip over that chunk
• Repeat from 1, until there’s no file left
Processing a chunk is also very simple –
it’s either data (so we load it into
memory accordingly), or it’s more
chunks (in which case we repeat the
steps above). This is known as ‘parsing’
the file; we use the known file structure
to perform an analysis, giving meaning
to the data.

High and Dry
Since we now have a basic grasp of the
format we should get a 3DS file and
process it by hand. This is known as ‘dry
running’. To do this we need a file to use
as our proverbial guinea pig. Naturally,
we want to be impressed by our work,
so we start looking for a T-Rex from
Jurassic Park, or Princess Fiona from
Shrek, perhaps.

Alas, this is misplaced optimism –
start small. Very small. Ideally, you

should start with a model of a cube
(Sorry)! At this size, it can be manually
examined by hand with a tool named
‘hexdump’. Each point, line and
parameter can then be compared with
your source model as an integrity check.
Then, if you are happy with your under-
standing of that section of the format,
you can add features (incrementally) to
the model: if you only change one thing
at a time, there’s only one thing to
go wrong!

Since I am not an artist, I shall use
a 9K rocket model from the Internet
(see Box 2: 3DS Models). Its validity has
been independently verified by running
it through several different rendering
packages and other model viewers to
check for errors.

Keep on Running
Having now got a 3DS file and an
understanding of the format, the next
step is to take a hexdump of the 3DS file
and print it out. I’ll wait while you do
that. No really. Print it out! You may be
surprised how much easier it is to work
through with a hard copy of the file (see
Listing 1).

Let us now perform a ‘dry-run’! The
first chunk we can see is 4d4d, and is
ae220000 bytes long. This translates to a
‘main block’ chunk (see Table 2: Chunk

IDs for a partial list) that is 8878 bytes in
size (since it’s in hex, and we must read
all numbers backwards – we’ll see why
later). We are only 6 bytes into this
chunk, so we can conclude there’s
another 8872 bytes of this chunk to go,
and so we process it. Which, by the file
specification and definition means we
must read the next header!

This one has an id of 0002 (reading
backwards, remember!) and is 10 bytes
long. We don’t know what the 0002
chunk is, so we skip over the remaining
4 bytes and read another chunk! 3D3D is

71www.linux-magazine.com February 2003

PROGRAMMINGC

Start location (*) End location (*) Size Name
(bytes)

0 1 2 Chunk ID
2 5 4 Next
chunk
6 ?? ?? Data in

chunk
(*) An offset in bytes from the beginning of the chunk

Table 1: 3DS Chunk

3D Studio was a DOS-only package from
Autodesk, and was, for many years, the
industry standard for 3D computer game
modelling. Although Discreet (or its parent
company, Autodesk) no longer supports the
3DS format, many packages still do.This is
for a good reason.

It can hold data for a number of different
models, as well as storing keyframe
(animation) data and dummy nodes
(indicating a position on the model for
attaching other objects).There are also
several open source viewers and tools
available, such as view3ds and lib3ds.

Box 1: 3DS?

As a programmer with little-to-no artistic
ability I have to download my own personal
artist from the Internet! There are several
web sites that will provide you with free 3DS
models for personal use.

Google will return you the following:

http://www.fantasticarts.com/3dmodels/
http://www.egypt3d.com/3D_Models/
3d_models.html

Box 2: 3DS models

Name Parent Of ID (hex)
Main Block - 4d4d
Mesh Data Main Block 3d3d
Keyframes Main Block b000
Object Description Mesh Data 4000
Polygon Data Object Description 4100
Light Object Description 4600
Camera Object Description 4700
Vertex List Polygon Data 4110
Face List Polygon Data 4120
A more comprehensive list can be downloaded from:
http://sparks.discreet.com/downloads

Table 2: Chunk IDs

$ hexdump -C rocket.3ds | head
00000000 4d 4d ae 22 00 00 02 00 0a 00 00 00 03 00 00 00 |MM."..........|
00000010 3d 3d b2 21 00 00 01 00 0a 00 00 00 01 00 00 00 |==.!..........|
00000020 ff af 67 00 00 00 00 a0 16 00 00 00 52 6f 63 6b |..g.......Rock|
00000030 65 74 73 68 69 70 20 62 6c 75 65 00 10 a0 0f 00 |etship blue..|
00000040 00 00 11 00 09 00 00 00 00 00 ef 20 a0 0f 00 00 |........|
00000050 00 11 00 09 00 00 00 00 00 ef 30 a0 0f 00 00 00 |.......0.....|
00000060 11 00 09 00 00 00 00 00 00 40 a0 10 00 00 00 31 |......@.....1|
00000070 00 0a 00 00 00 00 00 00 00 00 a1 08 00 00 00 01 |.............|
00000080 00 81 a0 06 00 00 00 00 40 3b 21 00 00 52 6f 63 |.....@;!..Roc|
00000090 6b 65 74 73 68 00 00 41 2c 21 00 00 10 41 80 0c |ketsh..A,!..A.|

Listing 1: 3DS file header in hex

fread(&id, sizeof(short), 1, U

file_ptr);
fread(&size, sizeof(long), 1, U

file_ptr);

There are three basic errors shown here,
which are common to a lot of asset-
handling routines.
• The size of the ‘short’ variable might

not always be two bytes.
• No errors are handled.
• This might not be compiled on an x86

machine.
The first can be fixed simply by creating
two custom types in a common header
file, say mv_types.h.

typedef unsigned short tWORD;
typedef long tLONG;

The second problem is a question of
discipline: all possible circumstances
must be catered for, so the error codes
from ‘fread’ must be checked. See Box 3:
Stability, for more information.

Most of the examples presented here
are without full error checking, allowing
us to focus on the more pertinent parts of
the code. However the full source is
available on the Subscriber CD.

The third situation is subtler. It is
the issue of endian-ness (see LM, issue
23, p69). Basically, this is where the order
of the individual bytes within a word
vary between processors. This is why we
had to read the chunk size backwards
earlier. The x86 family are considered
little endian and would work fine with
the above code. The 68000 Motorola
architecture would not, however.

When handling external file formats
you should note carefully the endian-

next and easily recognised as a model
chunk… and so on. This is one reason
for using small files – it’s a much easier
process.

Having done this, we can understand
what the program should be doing
which makes it possible to check that it’s
working properly. We can now move on
to implementing it!

Doin’ the Do
Looking at the algorithm referenced
above, it seems logical to write the
ReadChunkHeader function first. How-
ever, the code to do it is not as obvious
as perhaps you’d think.

72 February 2003 www.linux-magazine.com

CPROGRAMMING

Your program will be working with odd files,
of odd dimensions and odd sizes.You can no
longer make assumptions about its con-
tents, or limits. If the file supports 65536
options, then make sure your program can
cope with 65536 – even if the only software
generating those files is limited to 100!

Every return value (especially from file and
memory functions, like fread and malloc)
must be checked. It is possible the file will be
corrupt, broken, or maliciously hacked and
so can not be trusted!

Not only that, but once each section of a file
has been found (e.g. model data), we should
initialise its contents to sensible values:

pMesh->iNumFaces = 0;
pMesh->iNumVertices = 0;

This way, if a file lacks any particular
component, the program will not come
across uninitialised data and try to use
it. C++ classes support constructors that
are automatically called when an object
is created, making it an ideal language
for these tasks.

If you’re not currently in the habit of being
this paranoid – start now! Robust, stable,
code like this is no bad thing.You wouldn’t
trust a stranger typing in your root shell, so
why should you allow their data through
your program without checks?

Box 3: Stability

Figure 1: Sample Rocket Mesh – Hierarchy of Chunks

ness of the format itself – this is another
good reason for printing out the hex
dump of a sample file, as this makes it
easy to see. You should not, however, be
concerned with the endian format of the
target machine since it is always possible
to create endian-independent code:

BOOL mv_ReadWord(FILE U

*file_ptr, tWORD *pWord)
{
int c;

if ((c = fgetc(file_ptr)) U

== -1)
return FALSE;

*pWord = (tWORD)c;
if ((c = fgetc(file_ptr)) U

== -1)
return FALSE;

*pWord |= (tWORD)c<<8;
return TRUE;

}

This can be extended to an equivalent
mv_ReadLong function, or combined
with it to make an all-encompassing
mv_ReadChunk routine. My reasoning
for this particular implementation is that
by passing the address of a variable into
the function, we can effectively pass two
values out – the bytes read in from the
disc, and an error condition (see Listing
2). If you think it’s paranoia – you’re
right – now go and read Box 3 again!

Building Steam with a Grain
of Salt
From these little acorns, great oaks of
code shall grow. Referring back to the file
format, we can write a parsing function
quite simply – as shown in Listing 3.

This function is fairly typical of the
type we’ll need for write for this parser.
It consists of a prototype that includes
the file pointer (telling us where to get
the data from), a size of the data to read,
and a object pointer telling us where to
put the data, once it’s been read.

The main loop (lines 18 to 31),
consists of each step 1 to 5, outlined
above. The functionality of each step
should be self-explanatory.

Lines 8 & 9 make a note of when we
have to stop reading. The method I’ve
adopted here is to pass the total block
size into each function, and let it self-
terminate (line 31) at the appropriate
time. This isn’t the nicest code in the

world, but it accurately does the job! If
you’re designing a chunked format of
your own I’d recommend adding a
chunk with an ID (say 0xffff) that means
‘all done, return to your parent’, to make
termination easier to handle.

Because we’re entering a new branch
of the tree, and this branch has some
interesting data associated to it, we

create a structure (line 11) for this data to
fit into. Lines 15 and 16 prepare some
default mesh data in case nothing else
does. This way the render code can
check the data before blindly using
pointers (or data) that may be invalid.
Another case of writing robust code.

This code can be used as a template
for parsing other chunks, say for the

73www.linux-magazine.com February 2003

PROGRAMMINGC

BOOL mv_ReadChunk(FILE *file_ptr, tWORD *pID, tLONG *pSize)
{
if (mv_ReadWord(file_ptr, pID) == FALSE) return FALSE;
if (mv_ReadLong(file_ptr, pSize) == FALSE) return FALSE;
return TRUE;

}

Listing 2: Passing values out

01 MV_MODEL *mv_ParseMeshData
(FILE *file_ptr, tLONG mesh_size, MV_OBJECT *pObj)
02 {
03 tWORD id;
04 tLONG size;
05 tLONG end_of_block;
06 MV_MODEL *pMesh;
07
08 end_of_block = ftell(file_ptr) + mesh_size;

/* where the block should end... */
09 end_of_block -= sizeof(tWORD)+sizeof(tLONG);

/*...ignoring the header */
10
11 pMesh = (MV_MODEL *)malloc(sizeof(MV_MODEL));
12 if (!pMesh)
13 return (MV_MODEL *)0;
14
15 pMesh->iNumFaces = 0;
16 pMesh->iNumVertices = 0;
17
18 do
19 {
20 mv_ReadChunk(file_ptr, &id, &size);
21
22 switch(id)
23 {
24 case SMV_OBJECTDESCRIPTION:
25 mv_ParseObjectBlock(file_ptr, size, pObj, pMesh);
26 break;
27 default:
28 mv_SkipChunk(file_ptr, size);
29 }
30 }
31 while(ftell(file_ptr) < end_of_block);
32
33 return pMesh;
34 }

Listing 3: Parsing function

to read our data, we need to handle it in
an efficient way.

Pictures Of Matchstick Men
Every 3D mesh is composed of faces.
Lots of them. Each face is a triangle with
three points; each point being called a
vertex. So storing a mesh is simply a
case of storing every vertex – of every
triangle. This is normally done with two
lists: a vertex list, and a face list (see
Box 4 and 5).

A list of triangle vertices is rarely
used because in most meshes, each face
normally joins at least one other face
along an edge, meaning they will share
two vertices. By referencing the points in
a list (as opposed to labelling them
explicitly) we can save a lot of memory.

For example, the rocket has 266 vertices,
and 250 faces. At 12 bytes per vertex,
and 6 bytes per face, the mesh requires
6,312 bytes. Whereas, if each face was
stored with its vertices explicitly listed, it
would take 18,720 bytes (as each face is
now 36 bytes). The savings become
more pronounced as meshes become
larger and more complex.

So how does this help us? It tells us
that the format is optimised for size, not
usage. We must take this format and
store it internally in a manner that helps
our program. Music formats, such as
MP3 and MIDI are intended to be played
in a linear fashion, so their formats
lend themselves instead to streaming
(you may notice the slight pause when
jumping into the middle of an MP3).

To start with we should test our parser
by creating a simple OpenGL framework,
using the data in whatever format we
happen to have. As a bonus to those
committed Linux Magazine readers;
issue 8 (p72) includes a piece of Glut
framework code that opens a window,
accepts input from the keyboard and
mouse and draws a teapot on screen!
A quick copy and paste and it’s in our
project, with the glutSolidTeapot call
replaced with our own draw code which
looks as shown in Listing 5.

Best That You Can Do
There are two issues when it comes
to choosing the best internal format.
The first is for handling the object’s
properties (say, position and orientation)
and the second is for the rendering. So
is this a trade-off?

No. They should be held in different
structures! The properties could be held
in an MV_OBJECT structure (for
instance) that details where the objects
position is and what it is called. And a
separate structure (MV_MODEL, for
example) should describe how to draw it.

They are, after all, different entities,
especially since the position will change
more often than the mesh data will. By
separating them in this way, the internal
format can change several times, so only
the rendering function needs to be
updated. What’s more, the MV_MODEL
can describe which format of data
it’s using, allowing us to use different
formats within the same program… for
the same type of object!

mesh data, polygon data, or vertex list
(see Table 2: Chunk IDs). The Main
Block will read data, and only respond
to Mesh Data, at which point it calls a
similar function (called mv_ParseMesh
Data) which in turn looks for Object
Descriptions. This then looks for Polygon
Data, Lights or Cameras.

It is best to separate these into
functions because it improves readability,
re-emphasises the hierarchal nature of
the file, and allows you to take special
cases into account.

For example, the Object Description
starts with a NUL terminated ASCII
string before reading the chunks. We can
implement that easily and cleanly with a
separate function – an example is shown
in Listing 4. Having now got some code

74 February 2003 www.linux-magazine.com

CPROGRAMMING

BOOL mv_ParseObjectBlock(FILE *file_ptr, U

tLONG block_size, MV_OBJECT *pObj, MV_MODEL *pMesh)
{
tWORD id;
tLONG size;
tLONG end_of_block;

end_of_block = ftell(file_ptr) + block_size;
/* where the block should end... */
end_of_block -= sizeof(tWORD)+sizeof(tLONG);
/*...ignoring the header */

mv_ReadString(file_ptr, pObj->szName, sizeof(pObj->szName));

do
{
if (mv_ReadChunk(file_ptr, &id, &size) == FALSE)

return FALSE;
switch(id)
{
case SMV_POLYGONDATA:

mv_ParsePolygonData(file_ptr, size, pMesh);
break;

case SMV_MESHLIGHT:
mv_SkipChunk(file_ptr, size);
break;

case SMV_MESHCAMERA:
mv_SkipChunk(file_ptr, size);
break;

default:
mv_SkipChunk(file_ptr, size);

}
}

while(ftell(file_ptr) < end_of_block);
return TRUE;

}

Listing 4: Reading in chunks

typedef struct {
char szName[256];
MVERTEX position;
float xangle, U

yangle, zangle;
MV_MODEL *pMesh;
} MV_OBJECT;

This object should have its own set of
functions to manipulate it, keeping it
modular and distinct from the file parsing
code. Again, this distance allows features
to be added and changed without a
major code overhaul (see Listing 6).

And a set of manipulation functions
would not go amiss, as in our example:

void Obj_SetPosition(MV_OBJECT U

pObj, float x, float y, float z)
{

pObj->pos.x = x;
pObj->pos.y = y;
pObj->pos.z = z;

}

Improving the format can be done
(in OpenGL) using ‘array elements’

or ‘display lists’.
These should be
computed on load and stored in place of
the mesh data we loaded above. The
internal methods, or structure, are not
important unless you’re an OpenGL
programmer (it’s the same data, but in a
different format).

What is important, however, is that
such a format exists and may have
no relation to the 3DS file we started
with! You should arrange program
data in a format suitable for the program
– not the disc. We are fairly lucky in
so much as a good OpenGL format
can be created quite easily by expanding
the face vertices with fairly minimal
work on our part.

Alternative render code using ‘array
elements’. Made possible because we
load the vertices from the 3DS file
in the correct manner initially (see
Listing 7).

We could also use our MV_MODEL
structure to store the colour (or graphic
image) for each mesh face within this
structure, or add the face normal (the
direction it’s facing) to perform hidden
face removal, or produce better lighting.

This is information that could either
be present within the file format, or
computed from existing data. We simply
put the data at the fingertips of the
render code, where it deserves to be.
Whatever format results, we could (nay,

should!) save the data out as a raw block
that can be loaded in (much quicker)
next time. These resultant files are
platform dependant and target ready:
meaning we load them in, set up our
pointers and *wham!* away we go! An
example is shown in Listing 8.

In a larger project, these files may
be packaged with others (in much the
same manner as a ‘tar’ file) to speed up
loading, and ease distribution.

As we’ve seen, there can be a lot of
work in parsing a file format and storing
it efficiently in memory. When it’s done,
your programs take on an extra edge of
professionalism and the next step
towards the big time. ■

75www.linux-magazine.com February 2003

PROGRAMMINGC

for(i=0;i<iNumFaces;i++)
{
glBegin(GL_LINE_LOOP);

glVertex3d(pVList[pFList[i].v1].x,
pVList[pFList[i].v1].y, pVList[pFList[i].v1].z);

glVertex3d(pVList[pFList[i].v2].x,
pVList[pFList[i].v2].y, pVList[pFList[i].v2].z);

glVertex3d(pVList[pFList[i].v3].x,
pVList[pFList[i].v3].y, pVList[pFList[i].v3].z);

glEnd();
}

Listing 5: Copy and Paste
MV_OBJECT *Obj_CreateObject(void)
{
MV_OBJECT *pObj;

pObj = (MV_OBJECT *)malloc(sizeof(MV_OBJECT));
if (pObj == 0)

return (MV_OBJECT *)0;

pObj->pos.x = pObj->pos.y = pObj->pos.z = 0;
Obj->xangle = pObj->yangle = pObj->zangle = 0;
pObj->pMesh = 0;
return pObj;

}

Listing 6: More modules

glEnableClientStateU
(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0,U
(void *)pCurrMesh->pVertexList);
for(i=0;i<pCurrMesh-
>iNumFaces;i++)
{
glBegin(GL_LINE_LOOP);
glArrayElement(pFList[i].v1);
glArrayElement(pFList[i].v2);
glArrayElement(pFList[i].v3);

glEnd();
}

Listing 7: Render

fwrite(&iNumVertices, sizeof(iNumVertices), 1, file_ptr);
fwrite(pVertexList, sizeof(MVERTEX), iNumVertices, file_ptr);

fwrite(&iNumFaces, sizeof(iNumVertices), 1, file_ptr);
fwrite(pFaceList, sizeof(MFACE), iNumFaces, file_ptr);

Listing 8: Wham

18 1 0
2 1 0
3 2 0

… etc …

Box 5: Face List

-21.000000 0.000000 100.000000
-34.000000 5.000000 73.000000
-31.000000 8.000000 73.000000

… etc …

Box 4: Vertex List

