
\input will be merged into your file,
regardless; those with \include will not. 

So, if your 20 chapter book is nearly
finished, and you only want to polish up
a single chapter, a simple \includeonly
{chapter17} command will ensure that
LaTeX only adds the modifications for
chapter 17. The other chapters will be
ignored, although they will still appear
in the table of contents. Even the cross
references to passages in the chapters
you have excluded will be resolved
correctly, thanks to the magic of
\includeonly.

It makes sense to use a combination of
\include{file} and \includeonly{filelist}
if you only need to re-format a few
sections, as this avoids the need to mod-
ify or comment out individual \include{}
commands in the document. Simply add
an appropriate entry to the header (see
Figure 1).

LaTeX manages this feat of magic by
deriving information on chapter, page,
and footnote numbers from your file
when you first parse your document
with latex. This generates an .aux file for
each document section, which also
includes a count of the number of para-
graphs, sections and figures (amongst
many other things).

One issue that might prevent you from
taking this approach is the fact that
LaTeX needs to parse all your external
documents if any of the component parts
you are adding (or modifying) change
the enumeration scheme. In this case,
you should use the standard comment
symbol (a percentage sign, %), at the
start of the \includeonly{} line; LaTeX
will then parse all documents specified

by \include{} commands and build or
modify the .aux files.

Far and Away
Today, many documents are not only
printed, but also published electronically
on the web. You can use the latex2html
program which, as the name suggests,
translates LaTeX documents to HTML
format, complete with multiple links.

If this program is not installed on your
machine, you will find it at ftp://ftp.
dante.de/. When run, the latex2html
file.tex command will create a new direc-
tory called file which will store the
generated HTML (as index.html and file.
html) along with a short “About this doc-
ument” page, including the fact it was
created with latex2html. Any images
embedded in the document need to be
copied into the file directory.

There are several command line options
available to influence the behavior of

LaTeX is geared to producing long
documents, including books with
1,000 (or more) pages. Storing such

a manuscript in a single file is obviously
inefficient, so LaTeX supports three
commands that allow you to store each
chapter (or section [1]) of an extremely
long document in separate files. These
files, named with the special .tex suffix,
are then loaded and parsed by a central
document using the commands \input,
\include and \includeonly.

The simplest of these three is \input
{file}, which will insert the contents of the
file file.tex at the location of the com-
mand. The file itself (being only part of a
document) should not include a preamble,
a \begin{document} or \end{document}
command of its own.

\include{file} provides similar func-
tionality to \input; that is, the insertion
of a specified file at the current location
in the text. However, it really comes into
its own when used in conjunction with
the \includeonly command.

As time goes on, and your book
increases in size, the number of \include
and \input will grow. Processing the
entire book, just to check on a couple of
changes, is an inefficient use of time.

The \includeonly{filelist} command
comes to rescue here, and indicates the
files that should only be included when
processing the file. Those marked with

In this, the last part of our LaTeX

workshop, we will be looking at a few

special features, giving you advice on

the structure of complex documents,

and examining PDF and HTML data

export facilities.

BY HEIKE JURZIK AND 

STEVEN GOODWIN

LaTeX Workshop

TeXnical Specials

52 May 2003 www.linux-magazine.com

LaTeX Workshop: Part IIIKNOW HOW

Figure 1: Using \includeonly{filelist} to modify
external files



latex2html. One that we find particularly
useful is the -split [number] parameter,
which defines the nesting depth. By
default, the tool creates separate HTML
pages down to the eighth level:
• 0 – whole document
• 1 – \part
• 2 – \chapter
• 3 – \section
• 4 – \subsection
• 5 – \subsubsection
• 6 – \paragraph
• 7 – \subparagraph
• 8 – \subsubparagraph
Thus, calling

latex2html -split 0 file.tex

will create a single HTML file from your
LaTeX document (see Figure 2).

If your main aim is to export a file to
HTML, you can utilize a few of LaTeX’s
special features by using the html pack-
age and creating portions of your text in
either a latexonly, or htmlonly, environ-
ment. This allows you to specify
alternative HTML code at certain points,
which is especially useful for the graphi-
cal elements of your document.

\usepackage{html} % in the U

preamble
[...]
\begin{latexonly}
\begin{figure}[H]
\centerline{\psfig{figure=U
screen1.eps}}
\end{figure}
\end{latexonly}

\begin{htmlonly}
\begin{rawhtml}
<img src="screen1.jpg">
\end{rawhtml}
\end{htmlonly}

latex2html will not process anything in
the latexonly environment, in the same
way that htmlonly blocks will be ignored
for normal LaTeX operations. You can
even use HTML tags in a rawhtml envi-
ronment, within htmlonly. In this case,
latex2html will not try to understand the
resulting TeX code, and copy it blindly
into the HTML document.

latex2html can process complex struc-
tures, such as cross references, tables, or
pictures with great ease. However, the

converter has a few issues – most
notably with mathematical formulae.
Representing these in HTML is difficult
because they are not rendered correctly
by most browsers. As a solution,
latex2html converts them to bitmaps
which are then embedded into the
HTML. Ultimately, working with HTML
gives you, the author, very little influ-
ence on the external appearance of your
work because of vagrancies within the
user’s browser, so we might wish to
pursue a different format.

Top Gun
PDF (“Portable Document Format”) is an
operating system independent standard
created by Adobe to facilitate document
exchange, where the layout of the PDF
file is independent of the output
medium. Linux has two main programs
that can display PDF documents; Xpdf
[3] and the Acrobat Reader [4]. 

Following the introduction of version
3.0 in 1996, PDF offers a whole range of
additional functions, such as embedded
links to internal and external resources.
LaTeX can also facilitate the creation of
PDF documents.

There are two approaches to creating
PDF documents:
• Either, create a LaTeX document, then,

after calling latex, use dvips to create a
postscript file, and use ps2pdf to create
a PDF file

• Or, create a LaTeX document with PDF
extensions in place, and call pdflatex
instead of latex.

We shall look at the second method, by
showing what changes need to be made
to your LaTeX files to create PDF docu-
ments directly from .tex files. Firstly, you
need to include some additional pack-
ages to the preamble of your document:

\usepackage[pdftex,dvips,xdvi]U
{graphicx}
\usepackage[backref]{hyperref}
\usepackage{times}
\usepackage{thumbpdf}

You may be familiar with graphicx from
Part 1 of our workshop [2] – the para-
meters in square brackets specify pdftex,
dvips, and xdvi as output drivers. The
hyperref package extends the functional-
ity of LaTeX cross references, which in
turn can be converted to hyperlinks.
Since hyperref overwrites some LaTeX
commands it is often included as the
final package, to make sure that nothing
can overwrite it. The backref option in
hyperref creates a so-called back refer-
ence to the text passage, and also adds
links into the bibliography.

Additionally, we shall be utilizing a
different font – times. By default, LaTeX
uses fonts that have been optimized for
productions in print. However, these
fonts are more difficult to read on-

53www.linux-magazine.com May 2003

KNOW HOWLaTeX Workshop: Part III

Figure 2: latex2html at work



will generate the images that the
thumbpdf program will incorporate into
the final document. The following steps
demonstrate the commands required for
a TeX file called test.tex:

pdflatex test
thumbpdf test
pdflatex test

If you use \tableofcontents to create a
table of contents, this will automatically
be hyperlinked in Acrobat Reader: you
can then click on a line in the contents to
jump to the first page of the appropriate
chapter, or section. Cross references
(\label{X} and \ref{X}) are linked in a
similar fashion.

Out of Africa
Such labels are fine for
linking internally to
other parts of the same
document. But in the
world of modern elec-
tronic communications,
this is no longer
enough: we want to
link to web sites for
updated information, or
to sites with more
involving discussions
than our work includes.
Such connections are

called external links, and can be refer-
enced by our .tex file with the \href
environment:

\href{http://www.foolabs.com/U
xpdf/home.html}{XML}

After running the pdflatex program, you
will be able to click on those links in
Acrobat Reader and go directly to the
web site in question. In order for this to
work, however, you must configure the
reader, and specify a web browser. To
configure the weblink preferences go to
Edit/Preferences/Weblink… From here
you can choose the web browser appli-
cation. Click on browse and add your
least unfavorite browser to the selection,
for example /usr/bin/mozilla. If hunting
through the filesystem to find where
your browser is hidden is not your idea
of fun, a quick trip to the command line
will help:

which mozilla

This will return the full path to Mozilla.
Once configured in this way, clicking

on any external link in the Acrobat
Reader will start Mozilla and take you to
the appropriate web page (see Figure 4).

Days of Thunder
As we’ve seen, there’s a lot more to writ-
ing a document than just writing. The
extra work involved in splitting the docu-
ment into chapters will more than pay
for itself by the reduced processing that
LaTeX has to do. And our increased audi-
ence, after converting into HTML or PDF,
will more than reward our effort.

The extra commands we have to add
might not be big – but they are clever –
so there’s no reason not to make good
use of them. ■

screen, and so we must choose a more
suitable one.

The thumbpdf package creates minia-
ture pictograms (or thumbnails) for the
pages of your document, which make for
easier navigation through a document.
Acrobat Reader supports this feature as
seen in Figure 3.

If you need to embed images, ensure
that they are available in a pixel-orien-
tated format (such as .png or .jpg),
because pdflatex cannot handle Post-
Script images. pdflatex does, however,
supports the vector-based PDF format,
should you need it.

In order to use thumbnails, you need
to make at least two calls to LaTeX, and
one to thumbpdf. The first call to LaTeX

54 May 2003 www.linux-magazine.com

LaTeX Workshop: Part IIIKNOW HOW

Figure 3: Thumbnails facilitate navigation in Acrobat Reader

Figure 4: Out of the PDF, into the browser

[1] Heike Jurzik:“Tidying up Documents”–
LaTeX-Workshop: Part 2, Linux Magazine,
Issue 28, p54

[2] Heike Jurzik:“Making up with LaTeX”–
LaTeX-Workshop: Part 1, Linux Magazine,
Issue 26, p46

[3] http://www.foolabs.com/xpdf/
home.html

[4] http://www.adobe.com/products/
acrobat/readstep.html

INFO


