
little in terms of functionality, and partly
because the text is treated exactly like
binary data – meaning odd carriage
return and line feed combinations that
are present on some systems (cough!)
will get replicated “as-is” on any
machine to which the file is sent.

Back in Time
Unix-to-Unix Encoding (or UUE for
short) was introduced in version 4.0 of
BSD Unix, and is part of the same UU
family that includes UUCP (Unix-to-Unix
CoPy) and UUD (Unix-to-Unix
decoding). Its usage is like any other
command line tool:

uuencode fosdemtalk.mp3 U

talk_by_Steev.mp3 >fosdemtalk.uu

We need to specify some details, the first
being the source filename that we want
to encode. The second parameter is the
name of the file that will be created
when the UUE data is decoded, in this
example it would be clear that the file
has come from me.

Lastly, to prevent all our output find-
ing its way to stdout, a redirection places
the UU encoded text into a file. If no
filenames are given, UUE will expect
data from the standard input.

Instead of a redirection, you could, of
course, pipe it directly to your mail
client:

uuencode fun.jpg fun.jpg | mailU
-s "Check this" friend@work.com

Despite its age, UUE is still used today,
most notable in Internet newsgroups.
Pictures, sounds and programs are trans-
mitted using uuencode, which has an
unsurpassed dominance in the alt.bina-
ries.* hierarchy.

UUEncoding is a method to trans-
mit binary files (such as MP3s,
JPEGs, and executables) within a

text-only medium – the most notable of
which being email. It does this by en-
coding the data stream into a series of
printable characters that can be included
directly as if it were part of the text.

Although the format looks like unintel-
ligible garbage, it does not provide any
encryption facilities (see the “Eskimos
and Egypt” boxout) and so should not be
used for transmitting private or
confidential data. It does, however, pro-
vide a very simple (and consequently,
very quick) method for packaging files
through email as an attachment, or part
of an FTP to email gateway.

Although its primary purpose is for
binary files, UUE can also work as an
encoder for text files (perhaps as an
alternative to rot13 for hiding spoiler
information), but this case is less
common. Partly because it buys you very

In this article, Steven Goodwin

explains about the UUEncoding

method. What it is, where it’s used,

and most importantly, how this

transferring method works.

BY STEVEN GOODWIN

Explaining how UUEncoding works

Ready to Send

68 May 2003 www.linux-magazine.com

UUEncodingPROGRAMMING

There is a very important difference
between encoding and encryption. Encoding
converts between one format and another
for the purpose of transmission, storage, or
access. Some formats may have a password
attached to prevent it being decoded by
‘unauthorised software’– such as the
Microsoft Excel format.
However, as history has shown, it is a waste
of time trying to protect file formats by

encoding. Encoded formats will only stop
some of the hackers, some of the time.
In contrast, the purpose of encryption is
to stop all of the hackers, all of the time,
thus providing a secure method of storing
data which then may be transmitted
and accessed only by those with the
authority.The terms encoding and encryp-

tion should not be mixed up and used
interchangeably.

Eskimos and Egypt

As uuencode is a textual format, it is
easy to chop the file into pieces, using
standard Unix tools – such as split. The
file can be reconstituted after it is
received.

For example:

$ split -l 512 fosdemtalk.uu U

fosdemsplit_

will split the file fosdemtalk.uu into sev-
eral smaller files, each 512 lines long.
The files can be rejoined into one using
the ‘cat’ command:

$ cat fosdemsplit_[a-z][a-z] U

>fosdemtalk.uu

This technique is especially useful if you
are trying to bypass the size limit for
attachments on a particular mail server.
The only consideration to bear in mind is
that you can not split the UUEd file in
the middle of a line without great care –
but that is only common sense.

I’m the Only One
The text given in Figure 1 is an example
of a UU encoded file. As you can see, it
consists of three basic parts: a beginning,
a middle and an end.

The beginning section (which is help-
fully named with the keyword, ‘begin ‘)

acts as a header and describes the file
that follows. There are no white space
characters before it, and only one
(important) space afterwards. This
separates ‘begin ‘ from the three-digit
number that indicates the access mode of
the file. If you are not used to seeing the
mode written as 644, but as a combina-
tion of the letters ‘r’, ‘w’, and ‘x’ (please
see “All Right Now”).

This access mode will be given to the
newly created file, once it has been
decoded. As you can see, UU really does
stand for Unix-to-Unix – there’s no
Windows-specific perversions mas-
querading in here!

The filename is self-explanatory, and
can include a path if you so wish. It is,
along with the mode, the only part of the
file you can safely change without
risking corruption.

The middle section (with the letter M’s
down the left hand side) is the encoded
section (which we will come to shortly),
whilst the terminator is marked simply
with ‘end’. You will often see a back-tick
(`) on the preceding line. This is actually
part of the encoded data – not the ‘end’
tag. We shall see why later.

If you have split a large UUE file, do
not include the ‘begin’ or ‘end’ lines on
each section of the file. The presence of
‘the Ms’ is enough to indicate that this
portion of the file needs to be re-joined
to the whole (without any interspersed
blank lines), to permit decoding. This
should be done carefully, as UUE will
produce a broken file if done incorrectly.

If a UUE file is split and transmitted
through email it is usual to use the
subject line to indicate to the user which
part of file this is, as one UUEncoded
data block looks much the same as all
the rest!

Subject: fosdemtalk.mp3.uu 2/7

Each line of the encoded data may hold
up to a maximum of 45 characters, and
must end with a carriage return (and
certainly not a CR/LF combination).
Although some implementations support
it, the standard Linux version does not,
and usually results in a “No `end’ line”
error.

Bright Lights Big City
Every byte in a binary source file, be it

an audio file or the code for some appli-
cation, can be a value between 0 and
255. The 8-bit ASCII character does not
have such a large range of characters,
even though a single byte is used to rep-
resent each character used.

Any characters above value 127 are
considered to be 'extended' characters,
which cannot be relied on to work on
all systems. See the 'Sign of the Times'
box for the reason. This range is reduced
by almost a quarter again because most
of the characters with codes below
32 have special purposes like being used
as terminal control codes (like the bell
code) or are unusable because they are
used for text formatting and layout, such
as the carriage return and line feed char-
acters.

With a simple piece of C code you will
be able to see just how many characters

69www.linux-magazine.com May 2003

PROGRAMMINGUUEncoding

begin 644 hello.txt
M5&AI<R!I<R!A('1E<W0@;V8@555%+B!)="=S(&YO="!B:6<L(&YO<B!I<R!I
M="!C;&5V97(L(&)U=`II="!A="!L96%S="!P<F]V97,@;7D@<&]I;G0A"@I)
M="!I<R!P<F]V:61E9"!A<R!A;B!E>&%M<&QE(&]F(&5N8V]D:6YG(&9O<B!T
M:&4*87)T:6-L92!I;B!,:6YU>"!-86=A>FEN92P@9F]R('=H:6-H('1H:7,@
:9FEL92!W87,*8W)E871E9"X*"E-T965V"@H`
`
end

Figure 1:A sample of a UU encoded file

When shown on screen, the access mode for
a file is given as a combination of the letters
‘r’,‘w’, and ‘x’.

-rw-r--r-- 1 steev users
206 Jan 30 09:41 hello.txt

As we know, there are three types of access
group available under Linux: user, group, and
everybody. Each of these groups have 8
possible combinations of attributes (see
Table 1).

All Right Now

No. Access mode

0 = —

1 = --x

2 = -w-

3 = -wx

4 = r--

5 = r-x

6 = rw-

7 = rwx

So in our example, 644 indicates read/write access for

the user, and read-only for the user’s group, and every-

body else.This is probably the most prominent

application of octal (base 8) in Linux (for more informa-

tion, see Sweet Sixteen).

Table 1: File Attributes

Modern implementations of UUE will also
support encoding in base64.This does not
have the trademark ‘M’s, and begins with
the line “begin-base64”. Its implementation
differs and so shall not be covered here.

Base64

to offset (i.e. move) it into a range where
all the (contiguous) values represent
printable characters. The range chosen is
between 32 and 95, so a simple add
operation is all that’s necessary. For
those who can read ‘C’, we might
demonstrate this with a code fragment
similar to that in Listing 2.

Each mask is used to remove those
bits that have either been encoded
already, or those which map onto a
different ASCII character. If you have
trouble thinking of the masks, refer to
the “Sweet Sixteen” boxout or think of
them in binary.

There is however one special case
which must be taken care of, and that is
shown in Listing 3. Since character 32 is a
space (and liable to be mis-interpreted), it
is changed automatically by the encoder
to the back-tick (`). This has a code of
96, and therefore is still part of our

contiguous range,
which now extends
from 33 to 96.

Pop Musik
Now we under-
stand the encoding
method, we need
to know how
much data there is
to handle. You will
have noticed there
is no ‘file size’
parameter any-
where in the
format. It is not
needed, since the
start of each line

begins with a single character (the ‘M’s
we saw in the example), which indicate
how many characters are present on the
line, and can be anything from 0 to 45.
Longer lines are not permitted because
of UUE’s heritage; that is, email systems
might wrap them and corrupt the format
as a consequence.

Encoding the ‘number of characters on
a line’ is done in a similar way to the
main encoding: the value to be encoded
(which has already been restricted to 0
to 45, i.e. 6 bits) is offset by a specific

really are available for use. A rather pal-
try 95! That is not enough to utilise 7 bits
from each byte (as that would required
128 printable characters), but there is
enough for 6-bit encoding (which only
requires 64). So we take the first 6 bits
from the first byte and represent it as a
character – then we take the 2 left over
bits and join to the first 4 of the next
byte; we then take the 4 left over bits and
join them onto the first 2 bits of the next
byte; and finally we take the last 6 bits of
this byte. This converts four bytes into
three as seen in diagram 1.

This encoding method means that the
new ASCII file will be about 33% larger
than the original binary. The extra
control characters (newlines and ‘the
Ms’) will push this figure to around 35%.

For each 6-bit number we produce
(which can range from 0 to 63) we need

70 May 2003 www.linux-magazine.com

UUEncodingPROGRAMMING

Masks are used to isolate specific bits within
the encoding implementation.The example
of ‘char_3 = (byte_b << 2) & 0x3c’ isolates
bits 5,4,3 and 2.This maintains their value
(be it 0 or 1), while clearing all other bits to
zero.

The man pages for uuencode use 0x3f for
this case. However, this will also mask bits 1
and 0, and allow them to be written into
char_3.This, although not wrong (since
these bits will be 0 anyway), should not be
used from a programming standpoint
because it implies we’re interested in bits 1
and 0 from the (byte_b << 2) expression –
which we’re not! We only want 4 bits from
it. Our mask should reflect that, so we use
0x3c.

Trout Mask Replica

int c, tot=0;

for(c=0;c<127;c++)
if (isprint(c))

tot++;
printf("There are %d printable characters!\n", tot);

Listing 1: Printable characters

In order to represent negative numbers, computers use a system called 2’s complement binary.

A byte, in itself, has no meaning. It’s only when we say “this byte has a number in it”, does it
become meaningful. 2’s complement binary says that when interpreting the meaning of this
byte, each non-zero bit will correspond to a value, the most significant bit (MSB) of which will be
negative:

MSB LSB
Bit: 7 6 5 4 3 2 1 0
Value: -128 64 32 16 8 4 2 1
The range of a byte can therefore be from -128 to 127. It is a signed character.

If we interpret the byte as unsigned (i.e. -128 is read as 128), the range becomes 0 to 255.

Because the founding language of Linux (and Unix) was ‘C’– and ‘C’doesn’t specify whether its
character type should be signed or unsigned, it can not be determined which range is valid for any
specific machine. 128 may be a perfectly valid character code on an unsigned system, but break
badly on a signed one.Therefore, only values between 0 and 127 can be guaranteed, and anything
above 127 is considered ‘extended’.

Sign of the Times

All of computer science is about numbers
and what they represent. An eight bit byte,
for example, is often spilt into two 4 bit
numbers (between 0 and 15) which can be
rendered with the hexadecimal number sys-
tem (0-9, and the letters A to F).Those who
grew up with the home computer era in the
1980s may remember machine code listings
given as long strings of hexadecimal (aka
hex or base 16) numbers.

Octal is similar inasmuch as each Octal digit
(base 8) is a 3 bit number, whose value lies
between 0 and 7.This means an 8-bit byte
can be represented using two Octal digits,
with 2 bits left over which may (depending
on the circumstance) be ignored.

‘C’directly supports both number bases
because it often easier to think in hex or
octal, than decimal.

int iOctalNumber = 0644; /*
Value begins with a 0 means 644
is octal */
int iHexNumber = 0xC4; /*
The 0x means C4 is hex -- the
case of 'C' is unimportant */

Sweet Sixteen

Diagram 1: Converting 4 bytes into 3

number (also 32) so it can be repre-
sented as a printable character. With a
usual line length of 45, this produces a
value of 77: the ASCII character of which
is the letter ‘M’. It is present at the start
of every line, except the last one.

When a line is of zero length we
would normally produce character code
32 (i.e. the space). So, as before, a
special case is made to represent it with
a back-tick (`). This is why many UUE
files appear to terminate with a back-tick
and the keyword ‘end’.

Paddy McCarthy
When the file size is not an exact multi-
ple of 3, an extra one or two bytes of
padding are added internally to make the
algorithm work efficiently (which it does
by removing the two ‘special case’
scenarios that could occur). The decoder
will determine that the bytes are actually

padding by noting that the line contains
(say) 8 ASCII characters (implying a
possible 6 bytes of data), but the first
character of the line reports that there
are (in fact) only 5 bytes of data to
decode.

Another Night In
The decoding algorithm works as above,
but (naturally enough) in reverse. The
UUD program works simply as well:

uudecode textfile.uu

The program makes use of the ‘begin ‘
line (remember that all important
space!) to automatically strip off any
email headers or other spurious junk that
exists before it. Similarly, it will ignore
anything after the ‘end’ line; as it should.
The file created will (by default) have the
same name and mode as indicated by the
‘begin’ line, overwriting any file that pre-
viously existed with that name –
permissions permitting, of course.

You can ask uudecode to create the
file with a different name (but same
permissions) if you wish, by using the
-o flag:

uudecode -o new_hello.txt U

textfile.uu

Or, instead of creating a file, it is possible
to pipe the output into another program
like this:

uudecode -o /dev/stdout U

textfile.uu | less

Living Next Door To Alice
Despite appearances and its apparent
suitability, UUE is not used in MIME
(Multi-Purpose Internet Mail Extensions)
to send binary files as email attach-
ments. This is because UUE can, as we
have unfortunately seen, get corrupted.

However, where UUE scores highly,
is that it is incredible easy to program,
and can be handled by – and across –
virtually every operating platform
available.

Some mail clients will detect UUE data
within the message, present it as an
attachment, and then remove it from the
body of the mail automatically.

It is not unknown for even the
simplest of systems to provide such
decoding functionality straight out of
the box.

Its behaviour can also be problematic
for files that are very big. And by very I
mean those in excess of 2 gigabytes –
although transferring such files should
probably be left to FTP or DVD-R and
snail mail!

Despite these issues, however,
UUEncoding is a useful little tool that
doesn’t need to be consigned to the
bitbucket of /dev/null just yet! ■

71www.linux-magazine.com May 2003

PROGRAMMINGUUEncoding

unsigned char byte_a, byte_b, byte_c;
unsigned char char_1, char_2, char_3, char_4;

/* Retrieve byte_a, byte_b and byte_c from the data stream */
byte_a = fgetc(fp);
byte_b = fgetc(fp);
byte_c = fgetc(fp);

/* Map 3 bytes into 4 characters, each between 0 and 63 */
/* see BOXOUT: Trout Mask Replica for more information */
char_1 = (byte_a >> 2) & 0x3f; /* First 6 bits of a */

char_2 = (byte_a << 4) & 0x30; /* Last 2 bits of a */
char_2 |= (byte_b >> 4) & 0x0f; /* First 4 bits of b */

char_3 = (byte_b << 2) & 0x3c; /* Last 4 bits of b */
char_3 |= (byte_c >> 6) & 0x03; /* First 2 bits of c */

char_4 = byte_c & 0x3f; /* Last 6 bits of c */

/* Offset to the 32-95 range */
char_1 += 32;
char_2 += 32;
char_3 += 32;
char_4 += 32;

Listing 2: 6 bits to the byte code fragment

if (char_1 == 32) char_1 = 96;
if (char_2 == 32) char_2 = 96;
if (char_3 == 32) char_3 = 96;
if (char_4 == 32) char_4 = 96;

Listing 3: Dealing with Space

Although we refer to ASCII text (since that is
what most Linux users will be using), UUE
permits the text to be encoded in EBCDIC (a
character set used by IBM mainframes).
Fortunately, this is a much rarer case, and
so doesn’t need to be considered here.

ASCII and EBCDIC

Steven Goodwin is a lead program-
mer, who has just finished off his fifth
computer game. He has had more
bugs than you’ve had hot dinners…
When not working he can often be
found relaxing at London LONIX
meetings.T

H
E

 A
U

T
H

O
R

