
wrong, and from there we can look
further to find out why.

Unfortunately, while suitable for small
programs, adding code like this quickly
becomes tiresome, and therefore error
prone. It’s also a very static approach –
you can see the error happening, but are
unable to do anything about it. There are
various tools we can use that do not
require so much work, nor do they
require much (if any) modification to the
original source code.

Low Rider
Laziness is a good virtue for the pro-
grammer. As is procrastination. Before
jumping into the
debugging process
immediately, it is
always a good idea to
take a step back and
consider preventative
measures.

Firstly, does it com-
pile cleanly? That is,
does the compiler pro-
duce any warnings,
and if so in what way
could they cause the
program to malfunc-

tion. Compile with
-Wall and -O3 (the latter

does extra checks that non-optimised
builds don’t) and re-check the output.

Secondly, run other code review tools,
such as SPLint (Linux Magazine, issue
27), to report on errors that gcc doesn’t.
This will highlight code that typically
fails to work in all cases, or demon-
strates gaps in the implementation that
need to be catered for. Typical problem
cases are:
• An unsigned number being used in an

< 0 case (which can never be true)
• The equality symbol (==) being

mistyped as an assignment (=)
• Type casting (explicit or otherwise)

that might lose information
Thirdly, do any other tools report prob-

All bugs stem from one basic
premise – something you thought
was right, was in fact wrong.

This could range from an assumption
about the value of variables, to the valid-
ity of a memory address or pointer. The
effect of these beliefs, however, vary
enormously. It might produce a segmen-
tation fault, hang in an endless loop, or
report invalid results. But all bugs are
important, and we should do our best to
eradicate them all.

The conventional way of solving such
problems is to output trace messages
from within your program. This involves
adding code like:

fprintf(stderr, "Entering U

CalcAverage now (num=%d, U

total=%d)",num,total);
...
fprintf(stderr, "Leaving U

CalcAverage now (return av=%d)"U
, average);

We can then watch the stderr output
stream to pinpoint which function goes

Debugging software is a necessary

evil in development. Most pro-

grammers would forgo a year of pizza

if they never had to fix a bug again.

With the right tools, and a little

patience, the task becomes much

easier. This article covers some of

these tools, and looks more in depth

at the practises involved with one

of the most prominent, gdb.

BY STEVEN GOODWIN

How to make debugging less painful

The Pleasure Principle

64 June 2003 www.linux-magazine.com

DebuggingPROGRAMMING

Shortcut Command Description
r run [args] Begin a program
c continue  Continue running, from current breakpoint
n next Next instruction, stepping over function calls
s step Step to next line or function
p print Display a variable
pt ptype Gives the type of a variable. Also details structures
bt backtrace Lists a call stack of all functions called to reach 

here (also shown as where)
l list Lists part of the program
h help Specific help available with ‘help delete’, for example
q quit Leave GDB

Table 1: General Commands



lems with the program when run. For
example, memory debuggers that check
for malloc problems, and accesses to
data outside its valid bounds. Most com-
monly this occurs with strings (as their
bounds are rarely checked), but can hap-
pen with any array, pointer, or
dynamically allocated memory.

Programs in this category include
Valgrind, ccmalloc, and Electric Fence by
Bruce Perens (of Debian fame). This list
is not complete, and not all tools func-
tion in the same way. Valgrind, 
for example uses just-in-time (JIT)
debugging and is based on code re-inter-
pretation. ccmalloc, on the other hand,
requires your compiled object code to be
linked with the ccmalloc library, in order
to log memory leaks.

If, after all this, your program still
refuses to work we need to work through
the code line-by-line to find out where
(and why) it is going wrong. The most
oft-used tool for this is gdb (or one of its
many graphic counterparts). It allows
you to interactively control the running
of the program, stop it at various times,
inspect the variables, and even change
the flow of code whilst running. This
allows you to confirm that the program
will be correct, once the current error
has been fixed.

Enter The Dragon
GDB stands for the GNU Debugger, and
is one of the older parts of the develop-
ment suite and was started by rms in
1988. Despite (or perhaps) because of,
its history, gdb is still a command line
application and comes complete with a
wealth of powerful commands.

However, many people have created
graphical components around it, to make
the debugging environment a little
friendlier. Most Linux distributions come
with several of these (such as ddd, gvd
and xxgdb), along with a couple of other
variations on a theme.

The Linux Kernel, for example, has it
own special version (kgdb) that allows
remote kernel debugging across a serial
line. There’s also gdbserver for control-
ling gdb across a TCP/IP connection. For
the purposes of this article however, we
shall concentrate of the grandfather of all
these tools, gdb.

In order to use GDB you must compile
your program with special GNU debug-

ging information into the program. 
This data is known as ‘symbol infor-
mation’ and describes (amongst other
things) where the functions and
variables are stored in memory. This
makes it possible for the debugger 
to give you (the programmer) detailed
information about your program.

To add symbol information to your
program, simply re-compile with the -g
flag, thus:

$ gcc -g -Wall -O3 change.c U

-o change

Currently, the C, C++ and Modula-2
compilers support GDB debugging. 
We shall be using the simple C program
given in Listing 1, as our test case. 

It reports the fewest coins required to
give change for a given value.

A program that is compiled with the -g
option can run be run as if it were any
normal executable, and you would be
hard pushed to notice any difference.
However, the program now has had
some ‘magic dust’ added to it that allows
you to run it through the gdb debugger.
You can then load the debugger and pro-
gram in one go with the command:

$ gdb change

This will load gdb and automatically
bring change into memory for debug-
ging: but it won’t start running it until
you say so! (see also Box 1 „Nancy
Boy“) GDB works from its own com-

65www.linux-magazine.com June 2003

PROGRAMMINGDebugging

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void CalcChangeFor(int pence)
5 {
6 int i, val;
7 int coins[] = { 500,200,100,50,20,10,5,2,1,};
8
9 if (pence == 0)
10 return; /* amount is exact */
11 if (pence < 0)
12 return; /* invalid amount */
13
14 for(i=0;i<8;i++) { /* for each coin */
15 val = coins[i];
16 for(i=pence;i>0;i++)
17 if (val*i <= pence)
18 printf("%d x %dp\n", i, val);
19 CalcChangeFor(pence - i*val);
20 return;
21 }
22 }
23
24 void usage(void)
25 {
26 fprintf(stderr, "Usage: change <amount>\n");
27 }
28
29 int main(int argc, char **argv)
30 {
31 if (argc > 1)
32 CalcChangeFor(atoi(argv[1]));
33 else
34 usage();
35 return 0;
36 }

Listing 1: Simple Coin program



pressing only the return key. This is a
feature you will appreciate over time!

From the listing we can determine that
we should stop the program running at
line 31. Once stopped, gdb offers us a
command line with which to interrogate
the programs variables and functions.
We can then work through the function
one line at a time in order to discover
what went wrong.

In order to stop a program, we use
what is known as a breakpoint. The pro-
gram runs normally until it is about to
execute the piece of code at the same
address as the breakpoint (it is said to
have hit the breakpoint) at which point it
drops back into the debugger for us to
look at variables, or continue stepping
through the code.

(gdb) break change.c:31
Breakpoint 1 at 0x80485e0: fileU
change.c, line 31.

Breakpoints are fundamental in inter-
active debugging, and accordingly have
many options associated with them.
They can be set-up on a specific line
number (as we’ve done here), at the
beginning of a function, at a specific
address, or conditionally when a loop
counter reaches 906 (for example).

There can be any number of break-
points within the same program, and
they need not be created before the pro-

gram is run. They can be
added or removed at any
time from the gdb command
prompt. We can also list the
breakpoints currently in use
with the command as seen
in Listing 3.

Other oft-used breakpoint
commands can be found in
table 2.

Keep on Moving
Once the program has stopped running,
there are three essential commands to
get it moving again: ‘n’, ‘s’ and ‘c’. ‘n’
executes the next instruction, stepping
over any function call it comes across
and returns to the gdb prompt. Think of
the letter ‘n’ as a bridge that crosses over
something, to distinguish it with the next
command.

‘s’ will step to the next instruction,
whether it is inside a function or not.
Again, it will return to the prompt after-
wards, And finally, ‘c’ will continue
running the program until the next
breakpoint is reached, or the program
has terminated. Since the standard
libraries are not built with debugging
information, it is not possible to step
inside them using the ‘s’ command.

So let us step into our CalcChangeFor
function. It passes all the validation
functions without a problem, and starts
working on the loop to find the maxi-
mum number of 5 pound notes that can
be given in change for 23 pence. Natu-
rally, there shouldn’t be any. However,
once inside the loop, it seems reluctant
to leave! Let us look at the variables to
give us a clue how.

Changes
Interrogating variables is a similarly easy
task. The symbol information in the exe-

mand prompt (which also
features command history)
and uses Linux-style com-
mands (short, often cryptic,
and usually abbreviated) to
control the various features
and options.

For example, ‘run’ will
start the currently loaded
program from the begin-
ning, and can be shortened to ‘r’. Like
most gdb commands this may contain
optional arguments. For instance:

(gdb) r 23

This will run the current program, pass-
ing the number 23 as its first argument.
But don’t run it yet because the example
code is (naturally enough) full of bugs!
So, let us work through the program
inside the debugger to try and find them.

Stepping Stone
In order to examine the workings of the
program, we need to find somewhere to
start. Or rather, somewhere to stop! We
need to find a line of code that we can
start working from. In this example,
we’ll pick the first line of our program.
Instead of having to refer to the listing in
an external editor, we can use the inter-
nal ‘list’ command to show us the source
for any location in our project (see
Listing 2).

This will list the main function (plus 
a few lines before it) to the screen. This
information is taken directly from the
source code itself and so needs to be
present on the machine.

If you press return (without specifying
a command) gdb will re-interpret the last
command given. In the case of list, it will
continue to list the next few lines of the
source code. If the previous command
was ‘execute the next statement’, you
could step through the entire program

66 June 2003 www.linux-magazine.com

DebuggingPROGRAMMING

There are several ways to launch the gdb
debugger. Including the program name as
an argument is one way, using the ‘file’com-
mand is another. It is also possible to attach
it to an already running process, or by using
a ‘core dump’. A core dump details the mem-
ory during the last moment of the programs
life, in a similar way to an aircrafts ‘black
box’recorder.

Box 1: Nancy Boy
(gdb) list change.c:main
25 {
26 fprintf(stderr, "Usage: change <amount>\n");
27 }
28
29 int main(int argc, char **argv)
30 {
31 if (argc > 1)
32 CalcChangeFor(atoi(argv[1]));
33 else
34 usage();

Listing 2: Part examination

b [filename:]line_number Place breakpoint on line
b [filename:]function Place breakpoint at start of function
b [filename:]line_number if expr Place conditional breakpoint
watch expression Add watchpoint on variable/expression (shortens to wa)
info break Lists breakpoints and watchpoints
delete Delete all breakpoints
delete [N] Number breakpoint #N (as listed by info break)
disable [N] Disable breakpoint (or all if omitted)

Table 2: Breakpoint commands



cutable (added by the -g
option) contains full details
of the variables, their types
and program scope (if they
are local or global). We can
print out the value of any
variable in scope (and only
those in scope) with the ‘p’,
or ‘print’, command. So
when we have stepped into,
and up to, line 17 we can type:

(gdb) print val
$1 = 500
(gdb) p i
$2 = 23

The ‘$‘ symbols on the left refer to the
most recently displayed values, and will
increment with each command.

If we want a more permanent record of
these variables, we can ask gdb to out-
put them after every command by using
the display command (other samples of
which can be found in table 3).

(gdb) display val
1: val = 500
(gdb) disp i
2: i = 23

We can then continue stepping through
the code (using ‘s’), to witness these
values in an attempt to understand why
the loop doesn’t terminate.

It shouldn’t take us long before we
realise the error, since we can now see
the i variable increment instead of de-
crement: there’s a ++ instead of a – in
the increment portion of the for loop. A
simple mistake, but one made much eas-
ier to find with the variable being listed
at each step. We fix our code, and reload.

The Unforgiven II
Because loading the gdb debugger is a
time consuming task, there is a trick that
allows us to start the program again,
without quitting gdb itself. Firstly, we
kill the current process:

(gdb) kill
Kill the program being U

debugged? (y or n) y
We then recompile our program, and use
the ‘file’ command to load it back into
memory, before running it in the normal
way. In this way we can keep all our
previous breakpoints, saving us set-up
time that will become quite significant
on larger projects. If you try to re-com-
pile, and find that the file is ‘busy’ that
means the debugger is still using it and
you forget to kill the process first.

(gdb) file change
Load new symbol table from U

"change"? (y or n) y
Reading symbols from U

"change"...done.
(gdb) r

(Note that ‘r’ retains its previous argu-
ment, so we don’t need to re-type ‘r 23’)

This time if we step through our loop,
we see that i is counting down correctly.
So we remove all our breakpoints (see
TABLE 1: Breakpoint Commands), and
continue. After an unusually long time
the debugger produces a segmentation
fault and issues a command prompt (see
Listing 4).

Hmmm. There must be another bug.
To see where we are in the program we
need to look at the call stack, or back-
trace, to see what functions have been
called, and with what parameters (see
Listing 5).

This tells us that our algorithm is get-
ting stuck in a recursive loop: it is calling
the same function time and time again
with the same parameter. Consequen-
tially, the exit condition (pence==0) is

never triggered. So how
does this happen?

If we restart the debugger
(we haven’t changed the
file this time, so a simple
‘kill’ and ‘run’ will suffice),
and put breakpoints on
each recursive call to Calc-
ChangeFor we can see that
the value of ‘pence’ goes

through unaltered each time because
i*val = 0. Looking at the variables of i
and val, we see that, although val repre-
sents the correct coinage (5 GBP) i is
zero. Since that should only happen
once the entire loop has completed, and
the values of i inside the loop must
always be greater than 0 (because the
termination condition on line 16 reads,
i>0) we can deduce that we’re not actu-
ally inside the loop anymore.

A check of the code reveals that there
are no braces around lines 18 to 20.
Although the formatting might suggest it
to us, the reader, the compiler does not
see this, and so introduces this current
bug.

Another restart, another bug! This
time, we get no output, nor any usable
call stack. So, what do we do?

We have a reasonable idea that the
program is stuck in a loop, and since we
only have two of them, it should be fairly
easy to track down. We start by putting a
breakpoint on the outer loop (the loop of
each coin from line 14 to 22) and see if
that loop iterates correctly. If it doesn’t
return to the start then we know it’s the
loop inside that. If it does, then it’s a
problem with the outer loop.

So, we add our breakpoint at line 15
(see Box 3 “Numbers“ for why this
breakpoint is called 2, and not 1), and
restart gdb. The breakpoint fires! See
Listing 6.

Now we are inside the function, the
loop counter i is in scope. And because
only in-scope variables can be printed or
displayed we can now see the loop
count, and work our away around the
loop, observing its behaviour. So let us
continue:

67www.linux-magazine.com June 2003

PROGRAMMINGDebugging

(gdb) info break
Num Type Disp Enb U

Address What
1 breakpoint keep y U

0x080485e0 in main at change.c:31

Listing 3: Breakpoints

Program received signal SIGSEGV, Segmentation fault.
0x080485a7 in CalcChangeFor (pence=23) at change.c:19
19 CalcChangeFor(pence - i*val);

Listing 4: Segmentation fault

print [/F] [expr] Print expression immediately. /F is an optional format,
e.g. /x = hex, /d = dec, /u = unsigned
/o = oct, /t = bin, /c = char, /f = float

display [/F] [expr] Print expression before every command prompt
display List values for all expressions
undisplay Remove all expressions from display list
undisplay [N] Remove specific expression from list (as given with display command)

Table 3: Display commands



Old value = 1
New value = 23
0x080484db in CalcChangeFor U

(pence=23) at change.c:16
16 for (i=pence;i>0;i--)
3: i = 23

So there we have it! A poorly named
loop variable that was re-used without
permission. Calling the outer loop iCoin-
Loop (instead of the generic-looking i)
would have raised eyebrows had it been
erroneously reused here. This is a good
advert for sensible naming conventions,
as well as the power of watchpoints.

Had we missed this case, or we want
to run the loop again to see how it got to
this state, we can change the value of the
variable with the set command:

(gdb) set var i = 0

Alternatively, we could call the function
directly (with parameters). If there are
no parameters, then you must still
include the brackets.

(gdb) call CalcChangeFor(20)

This is our final fix. We re-compile, re-
run, and hey presto – we have results!

$ change 23
1 x 20p
1 x 2p

Hmmm. I think we’re being short
changed! Try some other numbers. Do
you notice a pattern?

The Logical Song
When you’ve found a bug, it is a 
very good idea to try and narrow the
cases in which the bug occurs. Test the
limits of your program: do negative
numbers works? Odd numbers? Even
numbers? Very big numbers? Very small
numbers? The more case studies you
have, the clearer the problem will
become, and the less code that may be at
fault.

In this case, all odd numbers exhibit
the problem. This means it’s probably an
issue with the routine that deals out the
pennies. If we don’t wish to step around
the loop 8 times, we can place a condi-
tional breakpoint that will only fire when
we’re dealing with pennies.

(gdb) b 16 if val==1
Breakpoint 5 at 0x804855e: U

file change.c, line 16.

Because the debugger stops the program
before the requested line is executed, we
must place the breakpoint on the line
after the assignment so that val will have
been assigned correctly. Also note the 
C-style double equals in the condition. If
something appears to go wrong, check
your breakpoint logic – you might have a
bug in your debugging method!

So, with breakpoint set we run the
program and…nothing! The breakpoint
doesn’t fire. So the program never
considers pennies. That would explain
why we’re getting short changed, but not
how it happens. So, we run it again, this

(gdb) disp i
3: i = 0
(gdb) c
Continuing.

Breakpoint 2, CalcChangeFor U

(pence=23) at change.c:15
15 val = coins[i];
3: i = 1

The first iteration appears fine. Let’s
continue:

(gdb) c
Continuing.

Breakpoint 2, CalcChangeFor U

(pence=23) at change.c:15
15 val = coins[i];
3: i = 1

The second iteration did not appear to
happen because i hasn’t been incre-
mented! Since we can see the i++
expression in line 14 we’re sure it must
be getting incremented correctly – it’s
just that something else is decrementing
it incorrectly. At this stage we bring on
the big guns – watchpoints.

These are powerful ‘breakpoints on
steroids’ features which will stop the
code whenever a variable change – on
whichever line it occurs – even if the line
doesn’t reference the variable explicitly
by name! Instead, it looks at the memory
address of the variable and alerts you
when something is written into it.

(gdb) watch i
Hardware watchpoint 3: i

If we continue running, we’ll see when-
ever i is changed:

(gdb) c
Continuing.

Hardware watchpoint 3: i

68 June 2003 www.linux-magazine.com

DebuggingPROGRAMMING

(gdb) backtrace
#1 0x08048505 in CalcChangeFor (pence=23) at change.c:19
#2 0x08048505 in CalcChangeFor (pence=23) at change.c:19
#3 0x08048505 in CalcChangeFor (pence=23) at change.c:19
#4 0x08048505 in CalcChangeFor (pence=23) at change.c:19
....

Listing 5: Viewing the stack
Breakpoints are always numbered consecutively, even after 
a delete. So, if you start with 2 breakpoints (1 and 2).
Issue ‘delete’.The next breakpoint added will be numbered 3!
This stops you from having to un-learn breakpoint
assignments.This is also true of display variables and
watchpoints.

Box 3: Numbers

The debugger should not just be consigned
in the aftermath of coding. It should
become a natural part of your development
cycle. Because prevention is better than
cure, step through all newly written code
with a debugger.Think about every line.
“Does it execute every line? Does it handle
the error conditions? (Remember that key-
board I/O is also a stream that can return an
EOF, not just files!) Do the loops terminate
correctly?”

These are just some of the questions you
should ask yourself and check with your
debugger before running the program to
see ‘if it works yet’. Because if you can step
through the code, and it follows the code
paths you expect, it probably will work first
time. And that is a great feeling.

Box 2: Close To Me



time setting the breakpoint for the two-
pence pieces.

(gdb) b 16 if val==2
Note: breakpoint 5 also set U

at pc 0x804855e.
Breakpoint 6 at 0x804855e: U

file change.c, line 16.

This time the second breakpoint fires,
and we can watch the debugger taking
care of the tuppenny pieces. However,
we also notice the loop doesn’t continue
with the next iteration. Printing out the
variables in use will show us that the
loop has legally terminated after 8 itera-
tions. Checking the array length we see
that there are, in fact, 9 different coin
denominations! Such mistakes often
occur with one line changes to ‘just add
support for 5 pound notes’, without
proper testing. Our finished masterpiece
is now complete, as in Listing 7.

Instead of recompiling the program
without debugging information, it is pos-
sible to strip out the debugging
information from the existing executable
with the command:

strip -g change

Split Decision
In large programs, adding breakpoints for
every iteration of the loop is prohibitive.
Imagine having to step through 1000
lines, to check the behaviour of the code.
It is not necessary, however, to step

through each one in turn, but to employ
a technique known as the binary split.

Say we have narrowed our bug down
to “somewhere in the program”, we
obviously want to narrow the potential
area. The binary split poses the question,
“Which half causes the bug? The first
half, or the second half?”

To answer this, we place a breakpoint
after the first half of the code and run it.
If the problem has not yet manifested
itself, then it is likely to be a fault with
the last half. From here, we can ask the
question again. Reducing the area under
test to the 1st or 2nd quarter. This ques-
tion can then be asked repeatedly until
we’re down to just one line, or a suffi-

ciently small routine that we can step
through line-by-line, studying its effects
in more detail. A binary split can limit
the search area of a 1,000 line program
to just 10 steps! So, no matter how many
millions of lines of code are in your
DNA-based dino-park, resolving the bug
is not as difficult as it may appear!

The Days of Pearly Spencer
Of course, the binary split, along with all
other techniques presented here will not
work in all cases. Debugging is as much
a case of skill, perception and instinct, as
it is about knowledge. But with a good
command of the tools, and how to apply
them, half the race is almost run. ■

69www.linux-magazine.com June 2003

PROGRAMMINGDebugging

(gdb) b 15
Breakpoint 2 at 0x8048554: U

file change.c, line 15.
(gdb) r
Starting program: /home/steevU
/code/change 23

Breakpoint 2, CalcChangeFor U

(pence=23) at change.c:15
15 val = coins[i];

Listing 6: Added
breakpoints

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void CalcChangeFor(int pence)
5 {
6 int i, j, val;
7 int coins[] = { 500,200,100,50,20,10,5,2,1,};
8
9 if (pence == 0)
10 return; /* amount is exact */
11 if (pence < 0)
12 return; /* invalid amount */
13
14 for(i=0;i<sizeof(coins)/sizeof(coins[0]);i++) { /*

for each coin */
15 val = coins[i];
16 for(j=pence;j>0;j--)
17 if (val*j <= pence) {
18 printf("%d x %dp\n", j, val);
19 CalcChangeFor(pence - j*val);
20 return;
21 }
22 }
23 }
24
25 void usage(void)
26 {
27 fprintf(stderr, "Usage: change <amount>\n");
28 }
29
30 int main(int argc, char **argv)
31 {
32 if (argc > 1)
33 CalcChangeFor(atoi(argv[1]));
34 else
35 usage();
36 return 0;
37 }

Listing 7: The final countdown

http://www.gnu.org/manual/gdb-5.1.1/gdb.
html

http://systems.cs.colorado.edu/grunwald/
Networks-spr01/gdb-refcard-letter.pdf

INFO


