Creating a game

PROGRAMMING Creating a game with SDL

Programming with SDL

In this, the first in a series of articles,
Steven Goodwin looks at SDL. What it
is.How it works. And more impor-
tantly, how to use it to write a brand
new game, Explorer Dug.

BY STEVEN GOODWIN

DL stands for Simple DirectMedia

Layer and is a cross-platform API

for programming multi-media
applications, such as games. It provides
a stable base on which developers may
work, without being concerned with
how the hardware will deal with it - or
even what hardware it is running on.

Sam Lantinga started the SDL project
in 1998 as a way of porting a Windows
application to the Macintosh. Soon after
beginning the SDL project he went
to work for (the sadly lamented) Loki
Software, and then to Blizzard Entertain-
ment.

Throughout this time he has continued
to work on SDL and, in the true spirit of
an open community, has been supported
(with various platform ports and bug
fixes) by a loose knit group of developers
across the Internet.

SDL is available under the Lesser GNU
Public License (LGPL), and as such does
not require the source code of any appli-
cation using it to be released.

Although this might raise political con-
siderations for some people, it has meant
the release of several commercial games

When builders go down
the pub they talk about
football. Presumably
therefore, when foot-
ballers go down the
pub they talk about
builders! When Steven Goodwin goes
down the pub he doesn’t talk about
football. Or builders. He talks about
computers. Constantly...

o
o
I
-
=2
<
LU
I
o

Figure 1: The opening image

for Linux, using the SDL project, by com-
panies that otherwise, are unwilling (or
unable) to release their source code to
the world.

Some of the most notable releases have
come from the aforementioned Loki
Games and include Civilization: Call to
Power, Descent 3 and Unreal Tourna-
ment.

Good SDL implementations are cur-
rently available for Linux (i386, PPC and
PS2), BSD, Windows, Macintosh OS 9 /
X, Solaris, IRIX and BeOS. Code for other
platforms, such as the Amiga, Atari and
SymbianOS, also exist, but are not cur-
rently supported directly by the core
developers.

We Built This City

As an API, SDL consists of five different
subsystems: video, audio, CDROM, joy-
stick input and timers. Each one is
targeted at a different area of develop-
ment, and can be initialised and used
independently of the others. In addition,
SDL promotes the use of libraries that
can provide new functionality to the
basic APIL.

The two most common libraries are
SDL_mixer (which provides better audio
handling), and SDL_Image which pro-
vides support for a wider selection of
graphic file formats, including GIF, JPG,
PNG and TGA. The main SDL website [1]
lists 76 different libraries currently in
production, providing a wide range of
feature sets from basic graphic primi-
tives, to networking and support for true

m August 2003 www.linux-magazine.com

type fonts (TTF). Most of these libraries
have been submitted by end users and
do not form part of the main SDL pack-
age. This is not a problem in itself, but if
your primary purpose is to use SDL for
cross-platform development work, be
sure to check the libraries’ availability
for your particular platform, since not all
are fully supported.

The Windows heritage of SDL is very
evident within the API, as much of the
terminology (and many of the functions)
have very close equivalents in DirectX.
However, it does not emulate Windows
in any way. Instead, every call to the SDL
graphics API, for example, will make
direct use of a driver from the host oper-
ating system, rather from an emulated
system.

On Windows, this means DirectX.
Under Linux, this functionality will
be provided by one of the graphic driver
libraries, such as X11 or DGA. MTRR
(Memory Type Range Register, [2])
control, for accelerated full-screen appli-
cations, is also supported. See Box 1:
Drivers.

On a similar note, the audio API can
enlist the services of OSS, ESD or aRts to
provide music and sound effects. By
accessing, as opposed to emulating, the
system drivers, a high level of perfor-
mance can be achieved across all
platforms.

Box 1: Drivers

SDLisn’t limited to X11as an output driver. It
can also use dga, fbcon and even aalib! To
make use of this facility, you must make sure
that the appropriate driver is compiled into
SDL (which may require another ./configure,
make, make install of the package). You can
then use the environment variable
SDL_VIDEODRIVER to indicate which driver
you want to use. For example:

export SDL_VIDEODRIVER=aalib
./explore

Alist of the drivers provided with SDL can be
found by typing:

./configure --help | grep 2
enable-video

Do The Digs Dug

SDL has many uses, and has bestowed
life upon emulators, music editors, DivX
players and video processing tools. How-
ever, it is within the field of games that
SDL has risen above its peers. There are
hundreds of SDL games available on the
Internet and most of these are available
with full source code. We shall be adding
to this collection with a small platform
game called Explorer Dug. It will be pro-
grammed in ‘C’ (as it is probably the
most widely understood), although SDL
itself can be written in many others,
such as PHP, Ruby, Perl, Java and LISP.
We shall primarily focus on the features
of SDL and how to use them to produce
a game. We shall also highlight the areas
of game development that require more
work from us, the programmer. OK?
Good! Let’s start...

Thunderball

The first task is to download and install
SDL. The current stable version is 1.2.5,
and is available from [3] as a gzipped
tarball. In addition to the source code
distribution there are two different
binary versions available: runtime and
development. Naturally, the latter pro-
vides better debugging facilities which is
more useful for us, as developers. How-
ever, I recommend working from source
as this allows us better customisation,
and full use of a debugger to step into
the SDL code itself. This is not only help-
ful in tracking down bugs, but can also
be very illuminating - especially some of
the comments!

The tar.gz is unpacked in the usual
way:

Box 2: SDLCONFIG

sdl-config is a small program that comes
bundled with SDL to report the base, or pre-
fix, location of your SDL installation. It can
also be used to give you the correct flags for
both the compiler and linker.

$ sdl-config

Usage: sdl-config [--
prefix[=DIR]] [--exec-
prefix[=DIR]] [--version]
[--cflags] [--Tibs] [--static-
1ibs]

$ sdl-config --Tibs
-L/usr/Tocal/Tib -WT,-
rpath,/usr/local/1ib -1SDL -
Ipthread

tar xfz SDL-1.2.5.tar.gz
and installed with the equally familiar:

./configure
make
make install

By default, this will place the required
library and include files into /usr/local/
lib and /usr/local/include/SDL respec-
tively, although this can be changed by
starting the process with:

./configure -prefix=/put/sdl/2
somewhere/else

There are a wealth of other configuration
options available here which allow you
to enable (or disable) various drivers
(such as ALSA), or include framebuffer
support. Apart from providing additional
drivers, you should have little cause to
re-./configure since SDL is very stable
and easy to setup, and invariably works
out of the box.

The SDL package also contains a com-
prehensive set of man pages (section 3)
detailing the parameters and available
flags for each function.

Build that wall

The SDL package comes with a small
test suite that checks the integrity of
each subsystem. These are held in the
test directory, and provided the install
succeeded, should ‘just work’. In cases
where things do not work as expected,
look for the error messages each test out-
puts to the command line as this can tell
you if there’s a problem with your hard-
ware, or its setup. Fortunately, if your
machine is capable of running a desktop,
it should be up to spec for anything
you’ll be doing with SDL!

All SDL programs can start with either
the line:

#finclude "SDL.h"

or:

ffinclude "SDL/SDL.h"

The former is preferred for reasons of
cross-platform portability, although it

does require you to add the SDL direc-
tory to the list of include paths that gcc

Creating a game with SDL PROGRAMMING

will search. All other SDL header files
are incorporated inside this one, to limit
maintenance. We will also need to link
the main SDL library (libSDL) into our
application. Initially we shall only be
using functionality from this library.
We’ll add other libraries as time goes on,
and our requirements grow. Until then,
both of the above demands can be satis-
fied on the command line with:

gcc -I/usr/include/SDL -1SDL 2
test/testsprite.c

If you change (or forget!) the location of
your include and library paths, you can
use the sdl-config program to provide
this information (see Box 2: SDLCON-
FIG).

All Around the World

Our first foray into SDL programming
will be the games “Welcome” screen.
This introduces a number of fundamen-
tal concepts, such as surfaces, blitting
and screen updates, that will reoccur
throughout any SDL application you
write.

As you read the code, you will notice
that every SDL function and structure
begins with the SDL_ prefix. In addition,
we shall wrap these functions up inside
our own (all prefixed with ‘ex’) to encap-
sulate more functionality and provide a
common place where game code and
SDL code meet. This will help in debug-
ging.

The first stage is to initialise SDL.
There are two functions to do this,
SDL_Init and SDL_InitSubSystem.
SDL_Init can initialise one (or more)
subsystems and should always be the
first SDL function in your program.
Although you can initialise additional
subsystems later you must always start
with an SDL_Init, because this contains
other initialisation components that
SDL_InitSubsystem does not have. An
example of these components would be:
the threads are initialised, the last error
code is cleared, and the parachute is
(optionally) deployed (see Box 3: Para-
chute).

SDL_Init(SDL_INIT_VIDEO | 2
SDL_INIT_AUDIO);

Is exactly the same as:

www.linux-magazine.com August 2003 ﬂ

Box 3: Parachute

The parachute is a way of trapping signals
(such as segmentation faults, bus errors,
broken pipes and floating point exceptions)
which give SDLan opportunity to call
SDL_Quit and free its resources. The
parachute is automatically installed on
initialisation. If you don’t want to make use
of it, you should start your application with:

SDL_Init(SDL_INIT_VIDEQO |
SDL_INIT_NOPARACHUTE);

Your application can provide its own signal
handlers if necessary. Although remember
that for portability, not all platforms support
all signals and some platforms may not
support signals at all.

SDL_Init(SDL_INIT_VIDEO);
SDL_InitSubSystem2
(SDL_INIT_AUDIO);

At the moment, we only have a use for
the video subsystem, so we will initialise
that and check for any errors.

SDL adopts the standard of using
negative values to indicate an error code.
The value of this number indicates the
precise error.

However, because humans are more
au-fait with words, SDL also provides the
SDL_GetError function to return the tex-
tual name of the last error. You should
use this after any function that generates
an error code. It should also be called
immediately, because if a subsequent
SDL function fails the previous ‘last
error’ will get lost.

Closing the system down is as simple
as calling the SDL_Quit function.

void exRelease(void)

{

Listing 1: Initialise

01 BOOL exInitSDL(void)

02 {

03 if
(SDL_Init(SDL_INIT_VIDEQ) < Q)

04 {

05
fprintf(stderr, "Couldn't init
SDL video: %s\n",
SDL_GetError());

06 return FALSE;

07 }

08

09 return TRUE;

10 }

SDL_Quit();

In the same way as you can initialise
subsystems individually, you can also
close them down in a similar manner:

SDL_QuitSubSystem2
(SDL_INIT_VIDEO);

There is no harm in closing down a sys-
tem that hasn’t been initialised, although
the final SDL function should always be
SDL_Quit, as this will remove the para-
chute signal handlers and terminate any
remaining threads.

The 1st Time | Saw Your Face
All graphics in SDL are stored in ‘sur-
faces’ It is a term borrowed from
DirectX, and means ‘graphical memory’.
The screen is a surface. The background
picture is a surface. Our Explorer Dug
character is a surface and so on. Surfaces
can be created and destroyed many
times throughout the life of the game.
However, there can only be one screen
surface. It is this screen surface that will
appear on your monitor, and so anything
that you want to be visible must be
drawn onto this surface.

Surfaces can be of any arbitrary size,
and are held in one of two places: video
memory, or system memory. Video
memory is the fastest, as it lives on the
graphics card itself. This is also known
as a hardware surface. System memory
(or software surface) is part of your nor-
mal RAM, and marked internally by SDL
as ‘holds graphic data’.

PROGRAMMING Creating a game with SDL

Box 4: Video Functions

These functions can provide some useful
insights into what video modes are possible
from SDL.The man pages have full proto-
types and explanations for these functions.

SDL_GetVideolnfo Retrieve information about the

video hardware

SDL_VideoDriverName Get the name of the video
driver

Enumerates all available
screen resolutions

SDL_ListModes

SDL_VideoModeOK Determines if a specific video

mode is available

The screen is initialised with the spe-
cial command SetVideoMode, although
the surface it returns is no different to
any other.

SDL_Surface *pScreen;
pScreen = SDL_SetVideoMode2
(640, 480, 16, SDL_HWSURFACE);

Here we’ve set up a 640x480 video sur-
face. The 16 refers to the bit depth,
which reflects the total number of
colours available. In this case, 65536
(2716), which is a good compromise
between visual quality and speed. The
usual options are 8, 16, and 24, although
SDL will also support 12 and 15 (see Box
5: Depth Charge).

Usually in software development the
programmer is expected to work within
the limits of the current hardware, and
degrade gracefully. Games, however, fol-
low their own set of rules! We’ve chosen
the screen size and bit depth to show off
our graphics in the best possible light. If

Listing 2: First screen

01 SDL Surface *pImg;

02

03 if ((pImg = SDL_LoadBMP("welcome.bmp")))

04 {

05 /* We have successfully loaded the image */

06

07 SDL_BTitSurface(pImg, NULL, pScreen, NULL);/* blit
everything */

08 SDL_UpdateRect(pScreen, 0,0,0,0); /* the whole
screen */

09 SDL_Delay(2*1000); /* 2 seconds
Y

10

11 /* And then we must free the surface */

12 SDL_FreeSurface(pImg);

13 |

n August 2003 www.linux-magazine.com

there aren’t enough colours, for example,
essential graphics like the key or the exit
gate might be difficult (or impossible) to
see. This is unfair on the player and so
it’s acceptable to exit the game if this res-
olution is unobtainable.

On the other hand, if you are using
SDL for non-game applications, or you’re
not worried about image degradation,
you can use whichever video mode the
user has set up on their desktop by set-
ting the bit depth to zero:

pScreen = SDL_SetVideoMode2
(640, 480, 0, SDL_HWSURFACE);
printf("The bit depth is set to2
%d\n", pScreen->format->2
BitsPerPixel);

For other interesting information con-
cerning the video component, see Box 4:
Video Functions.

The final parameter is a set of bitwise
flags. These specify attributes for the
surface, and the window in which it is
displayed. The SDL_HWSURFACE flag
requests that the screen surface should
be created in video memory, if possible.
If we find however, that the driver does
not support hardware surfaces (as in the
case of X11), or that the hardware mem-
ory is full, the surface will be still be
created - but in software. Do not be con-
cerned about where the surface is
created, all functionality is identical in
either case.

Also, don’t create a software surface
for the screen just because you’re using
X11. If it is appropriate to create a hard-
ware surface for a particular buffer (as it
is for the main screen), you should still
request SDL, HWSURFACE. You might be
using X11, but other users might not be,
and you want to give them the best game
you can.

It is also this final parameter that
allows your window to resize
(SDL_RESIZABLE), exist without a frame
(SDL_NOFRAME) or support Open GL
rendering (SDL_OPENGL). Often, the
first instinct with a game is to make it
full screen (SDL_FULLSCREEN).

However, during development we shall
remain with a windowed version as it is
easier to work with. Additionally, it is
possible to render your machine unus-
able if you are running the game
full-screen, since it is not always possible
to switch to another virtual desktop and
kill the program! This can also happen if
you hit a breakpoint in the debugger, or
fail to provide a means of quitting the
game. Remember that, like a debugger,
the SDL parachute traps various signals
(like Ctrl+C), and so is not always
available.

Every surface that is created (and that
includes the screen) must be freed with
the SDL_FreeSurface function, once it
has ceased to be of any use:

SDL_FreeSurface(pScreen);

Creating a game with SDL PROGRAMMING

Everything | Own

In addition to the screen, we need some
surfaces of our own, onto which we can
we draw our graphics. There are two
main ways of creating our own surfaces.
The first is to manually create a surface
with one of the two following functions:

SDL_Surface *SDL_CreateRGB2
Surface(Uint32 flags, int width2
, int height, int depth, Uint322
Rmask, Uint32 Gmask, Uint32 2
Bmask, Uint32 Amask);

SDL_Surface *SDL_CreateRGB2
SurfacefFrom(void *pixels, int 2
width, int height, int depth, 2
int pitch, Uint32 Rmask, Uint322
Gmask, Uint32 Bmask, Uint32 2
Amask) ;

These are rarely used because you have
to write each pixel of the image (in the
right format) directly into the surface.
Additionally, there are usually a lot of
pixels!

A much easier way is to draw images
with the GIMP, and save them as a BMP.
You can then load the image, format it
correctly, and copy it into a brand new
surface. SDL provides this rather gener-
ous functionality with a single function
call:

SDL_Surface *SDL_LoadBMP2
(const char *file);

Box 5:Depth Charge

When the bit depth is something other than
8,the pixel data is stored in a “packed for-
mat”. This is so-called because the colour is
represented by three numbers, one for each
of the red, green and blue components,
which are then packed together (in a single
Uint16 or Uint32) to illustrate the colour.

With a bit depth of 24 (sometimes called
true colour), each of the RGB components
occupy 8 bits. This is highest resolution
you're likely to need, but is usually an overkill
for games.Things get more complicated,
unfortunately, with the most common
packed format, 16-bit colour. Here, the RGB
components use 5, 6,and 5 bits each,or 5,5
and 6,or 6,5and 5! The exact format of the
surface can vary depending on where it is
stored, and which graphics card you are
using.The order will also vary if you are using
a PowerPC, for example, because of endian

issues. However, this is not something you
often have to worry about, since SDL will
convert between the formats automatically
during a blit. If you do need to understand
the internal format (as we will see later in
this series) you'll be pleased to know that
SDL provides a SDL_MapRGB function to help
you. In truth, this problem with packed for-
mats also manifests itself with 24 bit colour
modes, but that is less pronounced.

The rules change when specifying a bit
depth of 8.Instead of splitting the 8 bits up
into RGB components, each value (from o to
255) references a separate table that indi-
cates the actual colour.This table is called
the palette (which uses a full 24 bits to hold
the colour information), and can be setup
with the SDL_SetColors and SDL_SetPalette
functions. Although it has fallen out of use
by games programmers for several years

now, can still produce high quality graphics
on very limited hardware. You can also pro-

duce a lot of clever (and very fast) effects by
changing the colours in the palette without
having to change every pixel on-screen.

The biggest problem with 8 bit palletised
surfaces is that you can only have 256 specific
colours for the whole image. If your back-
ground uses one set of 256 colours, and your
main character uses 256 different ones, then
some of the colours will get changed auto-
matically by SDL.While this is no bad thing,
the results can be unpredictable, and there-
fore make your artwork look a little less
impressive than it would be otherwise.On
the positive side, however, moving 8 bit data
around in memory is twice as fast as moving
16 bit data, and so is often a good trade off
for handheld devices.

www.linux-magazine.com August 2003 “

SDL only provides support for BMP files
within the standard library. Although
SDL_image provides support for a num-
ber of other formats, our game will be
limited to BMPs, and make use of several
surfaces loaded in this way. Each surface
will hold a particular set of graphics: one
for the backdrop, one for the player, one
for the enemies, and so on.

The final game image will then be con-
structed by a number of surface-
to-surface copies (the screen is just a
surface, remember), as governed by the
game logic. This copying process called
blitting, and is short for BLock Image
Transfer.

Ballroom Blitz
We can blit between any two surfaces,
and that includes from one surface to
itself. We can also blit from one portion
of one surface, to a different portion of
another surface. The only limitation is
that size of both portions (the source,
and the destination) must be of the same
size. The blit operation can (if both sur-
faces are in video memory) be
performed by the hardware, which is
incredibly fast. Not all graphic drivers,
however, support hardware acceleration,
so for a brief reminder, see Box 1: DRI-
VERS.

There is only one function for blitting.
It sits alone, and so should be easy to
befriend!

int SDL_BlitSurface(2
SDL_Surface *src, 2
SDL_Rect *srcrect, 2
SDL_Surface *dst, 2
SDL_Rect *dstrect);

Since this function has no capacity to
stretch or rotate the surface you may
wish to resort to either the SDL_gfx [4],
or SGE [5] libraries. We shall not use
either of them here however, as stretch-
ing bitmaps is a very time consuming
process and we’re aiming for maximum
speed. We shall therefore generate all
our graphics to the exact size that we
need them.

SDL_Rect is a simple structure to indi-
cate the size of the area we want to blit,
given as X, y, width and height. SDL will
automatically clip our co-ordinates inter-
nally if we exceed the boundaries of
either the source, or destination, surface.

This is very useful, as we can draw
graphics at positions like (-4, -2) or (600,
450), which allow our graphics to slide
smoothly off the screen. SDL will work
out how to render the visible portion
optimally.

SDL_Rect srcrect = 2
{600, 450, 64, 64};

Will only blit from 600, 450 to 639, 479
despite the extents being 663, 513.

If you wish to blit the entire surface
(as we do for the welcome screen) then
pass srcrect as NULL.

Because we are unable to stretch and
blit, only the x,y co-ordinates of dstrect
are used, and refer to the top left corner
of the destination area. Passing NULL as
the destrc will tell SDL to start blitting
from (0, 0). If the extents of the blit
exceed the destination surface the image
will be clipped as normal. This clipping
area can be limited artificially with:

void SDL_SetClipRect(2
SDL_Surface *surface, 2
SDL_Rect *rect);

And any future blit to that surface will
only occur to the area within specified
rectangle. As above, passing a NULL as
the SDL_Rect pointer will tell SDL to use
the entire surface area, which effectively
removes the clipping area. This feature
allows us to keep an area of the screen
pure and sacred, regardless of what
game components try to blit themselves
there, to preserve information such as
the score, or number of lives.

Get Fresh at the Weekend

So we can now load an image into a sur-
face, and blit that surface to another
surface (such as the screen). In order to
see our handy work, we must impart one
more revelation. The screen surface we
have setup is not the image that is visible
in the window. That image is controlled
by the driver (such as X11), not SDL. In
order to see the image, we must tell SDL
to update the driver with the graphics
from our surface. To do this we use the
SDL_UpdateRect function.

void SDL UpdateRect(2
SDL_Surface *screen, Sint32 x, 2
Sint32 y, Sint32 w, Sint32 h);

m August 2003 www.linux-magazine.com

PROGRAMMING Creating a game with SDL

We can request that only a small rectan-
gular portion of the screen be updated
(which is naturally faster if we are only
changing a small portion of the surface).
As an alternative, we can choose to pass
zeroes to each of the parameters and
update the whole area in one hit. For
example:

SDL_UpdateRect2
(pScreen, 0, 0, 0, 0);

We’ve now blitted some graphics to our
screen and caused the monitor to update
itself with our image. So, if we add a
small delay, have completed our first
screen.

Creating a game level, or animating
characters, is simply a case of more blits,
in more places, from more surfaces. It
involves nothing more than we have
already seen.

Unfortunately, there are good, and
bad, ways of doing this. Next month we
will look at the good ways, showing you
how surfaces can be used to create the
game screen, and animate some bad
guys!]

To ensure cross-platform compatibility, the
standard C types like short and int, are not
used. Instead, SDL defines its own, which are
then used throughout the APl. These types
can then be changed on new platforms to
ensure that a Uint16, for example, is always
16 bits.

typedef unsigned char Uint8;
typedef signed char

Sint8;

typedef unsigned short Uintl6;
typedef signed short Sintl6;
typedef unsigned int Uint32;
typedef signed int

Sint32;

[1] SDL:http://www.libsdl.org
[2] Memory Type Range Register: http://
www.linuxvideo.org/user/mtrr.txt

[3] SDLdownload: http://www.libsdl.org/
download-1.2.php

[4] SDL_gfx library: http://www.ferzkopp.
net/Software/SDL_gfx-2.0/

[5] SGE library: http://www.etek.chalmers.se/
~e8cali/sge/index.html

