
times a second, so do not need to handle
the SDL_VIDEOEXPOSE message, for
example.

Each event structure holds a myriad of
information pertaining to the event. For
instance, SDL_MouseButtonEvent indi-
cates which mouse button was pressed,
the x and y location of the mouse pointer
and which mouse device it was (for
those systems with two, or more, mice).
The names of the member variables
within each structure can be found from
the man pages, or SDL_events.h, which
usually lives in /usr/local/include/SDL.

From here we can create event han-
dlers for each message we’re interested
in. We do this by creating separate func-
tions that handle one particular class of
event (like input).

Whiskey in the Jar
Control is probably the most important
part of a computer game. It is the inter-
face between the player and the game.
Every game designer knows this and will
spend many weeks (even months)
tweaking the control system until it is
“just so”. SDL doesn’t make this process
any easier, but it does provide enough
information about the controller, be it
from the mouse, keyboard or a joystick,
to allow us enough flexibility to create a
good control system.

Keyboard input is the most prominent
form of input for this game, since most
PC’s tend to have one! But because each
key press comes in two parts, a key

down event and a key up event, we need
to listen for both.

Handling multiple keys is very
easy, and the keyboard’s auto-repeat
speed causes no additional problems,
since we’re concerned only whether the
key is down, or not. If auto-repeat
becomes an important feature we
can always store the time at which the
key was pressed by utilising the SDL_
GetTicks function.

Given an SDL_Event pointer (pEvent)
we can find the correct key with the
line:

SDLKey key = pEvent->keyU
.keysym.sym;

This may appear a little long-winded for
a simple key press, but the other mem-
bers of these structures are either
redundant (pEvent->key.state, for
example, includes the same information
as the event type – pressed or released)
or unimportant (the scancode for your
specific keyboard). I prefer to think of
this as thorough, and not verbose.

The sym value equates to one of many
defines that indicate the specific key:
SDLK_LEFT for the left cursor and
SDLK_RIGHT for the right cursor, for
instance. The alphanumeric keys map
very nicely to ASCII, so checking for the
‘0’ key is as simple as it should be:

if (key == '0') /* ...we couldU
have used SDLK_0 here... */

We saw last month [2] how SDL
provides all input to our game
through an event loop with

SDL_PollEvent. This function fills our
SDL_Event variable with useful informa-
tion about the next event. We now need
to interpret this data.

Message in a bottle
The first thing to notice is that
SDL_Event is not implemented as struc-
ture, but as a union, because each
element is mutually exclusive – there is
no point having information about the
mouse pointer for an event that
describes a key press. As a consequence,
reading part of a structure that doesn’t
match the event type will invariably pro-
duce unusable data, and not the
contents of the last mouse message, for
example.

We only need to handle those events
we have an interest in – everything else
will be ignored, SDL will not try and
guess what to do with the event. In our
game we always update the screen 60

This month is all about control. And Steven Goodwin has lots of it. We look at

how the player controls the game and how the game controls the characters.

BY STEVEN GOODWIN

66 October 2003 www.linux-magazine.com

Game designing under Linux

Taking Control

Creating a Game: ControlsPROGRAMMING

void exUpdateInterface(const U

SDL_Event *pEvent)
{
if (pEvent->type == SDL_KEYDOWN)
{
SDLKey key = pEvent-U

>key.keysym.sym;

if (key == SDLK_LEFT)
{
iMovement[EXI_MOVE_LEFT] = U

TRUE;
iMovement[EXI_MOVE_RIGHT] = U

FALSE;
}

/* ... and so on ... */

Listing 1: Key presses

if (SDL_GetModState() & KMOD_SHIFT) printf("One of the shift keys has
been pressed.");
if (SDL_GetModState() & KMOD_LSHIFT) printf("The left shift key has
been pressed.");

Listing 2: Key modifiers

However, I recommend using the defines
from SDL_keysyms.h, as the letters
always trigger events with their lower
case ASCII counterparts (the key value
would equal ‘a’, not ‘A’), regardless of
the caps lock or shift key.

if (key == SDLK_a) /* ...Yeah!U
It's really lower case... */

We shall use this newfound knowledge
to store the key presses in a game-
friendly manner, by creating a special
array to indicate which keys are control-
ling the character. This is different from
which key has been pressed because,
when two keys are down, we want the
most recently pressed key to control the
direction. Our code looks something like
Listing 1:

Writing the control system in this
manner makes it much easier to change
the key assignments, or add joystick
control. Be warned, however, that
the ‘key up’ message will get lost
if you switch from game to debugger.
SDL isn’t running, and is not able to
listen for the key up messages (which
now go to the debugger). So when
you return to the game it will take
an extra key-down, and key-up event
to reset the system. This is most notable
if your character continues to move
despite no keys being pressed!

Checking for all keys in this
manner, however, can be
slightly cumbersome. Abs-
tracting the game control
keys is a ‘good thing’, but
imagine having to write the
code to accept the players

name for the high score table where the
left cursor had been remapped to ‘Z’,
say. In this case, we just want to ask SDL
which particular keys are down. We can
do that with the function,

Uint8 *keystate = SDL_U
GetKeyState(NULL);

The pointer returned is an array (which
you are not allowed to modify) that rep-
resents each key in the system, and is
referenced with the SDLK_* macros we
saw earlier. Any non-zero value in this
array means that the key is currently
down.

if (keystate[SDLK_F12]) U

printf("The F12 key is down.");

Because this function reports the key
state, and not events, any key that has
been held down for two consecutive
frames will be considered ‘TRUE’ for
both frames. Normally this is not a prob-
lem, but if you were using this feature to
perform a screen grab, you’d get one
image every frame whilst the key was
down. See Box 1 “Hold Me Now”, for
details on how to take a screen grab.

You can also determine which of the
key modifiers (like ALT, or SHIFT) are
pressed – but that requires a different
function. See Listing 2.

My Girl Lollipop
Joystick input is very
easy to program under
SDL, it even supports
multiple joysticks
without any extra
effort. In our examples,

we shall assume one joystick, but in a
more complete game you’d want to let
the player select which joystick they
used, and which character it would
control.

Unlike keyboard control, joysticks are
not automatically initialized by SDL
when we call SDL_Init. There are three
additional steps: you must initialize the
joystick subsystem (which is no different
to the video, or timer, subsystems),
switch on joystick events (otherwise the
event loop will not report joystick mes-
sages), and open a joystick port for
reading. See Listing 3.

If you are supporting several joysticks,
then the SDL_NumJoysticks function will
report the number of joysticks attached
to your system. The parameter to the
SDL_JoystickOpen function, as you’ve
probably guessed, represents which of
the joysticks to open.

Once you have an SDL_Joystick
pointer you can query the capabilities
and parameters of the stick. This is
important because each joystick is differ-
ent: some have hat controls (8-way

67www.linux-magazine.com October 2003

PROGRAMMINGCreating a Game: Controls

SDL has made screen grabs a very simple
affair requiring just one function,
SDL_SaveBMP.This is an exact mirror of the
SDL_LoadBMP function we’ve used since
part 1, and takes the surface pointer (which
in our case is the screen surface) and a file-
name.

if (ev.type == SDL_KEYDOWN &&
ev.key.keysym.sym==SDLK_F12)
{
static int curr_grab = 0;
char GrabName[32];
sprintf(GrabName,
"DugPic%d.bmp", curr_grab);
++curr_grab;
SDL_SaveBMP(TheGame.pScreen,
GrabName);
}

Box 1: Hold me Now
SDL_Joystick *pJoyStick;
SDL_InitSubSystem(SDL_INIT_JOYSTICK);
SDL_JoystickEventState(SDL_ENABLE);
pJoyStick = SDL_JoystickOpen(0);

Listing 3: Joystick initialization

if (pEvent->type == SDL_JOYAXISMOTION)
{
if (pEvent->jaxis.axis == 0) /* X-axis; assume

stick 0 */
{
int DeadBand = 8000;

TheGame.iface.iMove[EXI_MOVE_LEFT] = FALSE;
TheGame.iface.iMove[EXI_MOVE_RIGHT] = FALSE;

if (pEvent->jaxis.value < -DeadBand)
TheGame.iface.iMove[EXI_MOVE_LEFT] = TRUE;
else if (pEvent->jaxis.value > DeadBand)
TheGame.iface.iMove[EXI_MOVE_RIGHT] = TRUE;
}
}

Listing 4: Joystick motion

SDL_JoystickGetAxis(SDL_Joystick *joystick, int axis);
SDL_JoystickGetHat(SDL_Joystick *joystick, int hat);
SDL_JoystickGetBall(SDL_Joystick *joystick, int ball, int
*dx, int *dy);
SDL_JoystickGetButton(SDL_Joystick *joystick, int
button);

Listing 5: Query joystick

The deadband is an
interesting point. All
joysticks move, that
we know. But joysticks
also move when you’re
not touching them!
They all jitter slightly,
and so we’ll get spuri-
ous joystick events
each frame. Since this
is a hardware feature,
we can not stop it from
happening, but we can
limit the effects it has on our game. To
do so, we create a deadband around the
central portion of the joystick. Any
movement within this area is ignored,
and treated as if the joystick were report-
ing 0,0. Outside the deadband, we treat
the stick as normal. I’ve used a hard-
coded deadband of 8000 here, which is a
reasonable number for this type of game,
although in a professional release this
value should be customisable.

Jumpin’ Jack Flash
Like the keyboard and mouse devices,
the joysticks can also be read without
the event loop. To do so requires you to
call the SDL_JoystickUpdate function
that reads the hardware, before using
one of the functions in Listing 5 to query
the data:

Now we’ve retrieved the input, we
want to control something in the game
and so, we need some game objects…

Common People
Every object in the game, whether it is
the player, an enemy, or an exit gate, has
a number of common elements. They all
have a start position, they all have
graphics and they all “do stuff”. How-
ever, every object in the game will have a
different start position, different graph-
ics, and all do different “stuff”. In order
to implement a good framework we must
be able to identify those elements and

isolate them effectively from the com-
mon game engine.
Common data, for all objects:
• Start position
• A surface containing graphics
Unique code, for each type of object:
• How to initialise the object
• How to update them, e.g. speed and

direction of travel
• How to draw the object
• How to destroy the object
We need this distinction because, for
example, although we can describe each
object in terms of a surface, not every
object in the game will use this surface
in the same way. Some objects will con-
sist of one tile (the enemies), some will
use several (the exit gate), and some will
be faded in over time (the player).

This list is certainly not complete, and
we’ll no doubt introduce new features
during the lifetime of the game, but it is a
good starting point. The method I’ve cho-
sen to implement these features utilize
individual callback functions, where each
has a specific purpose.

However, the precise implementation
of how that function works is controlled
by code that is specific to each type of
object. Every such type is called a behav-
iour. And each callback function will
handle how that object behaves in any
particular situation. Our initial set of call-
backs are shown in table 1. This list
mimics our general game loop quite

digital switches), some have track balls
and some have more buttons than
you could possibly imagine! Flight simu-
lator joysticks usually have all of the
above!

Determining the capabilities of the joy-
stick will let you know if the player will
have to reassign joystick buttons to the
keyboard, for example. We only need left
and right control, and a jump button, so
any available joystick should be good
enough for Explorer Dug.

Referring back to table one above
there are three main events that we’re
interested in, SDL_JOYAXISMOTION,
SDL_JOYBUTTONDOWN and SDL_JOY
BUTTONUP. Since there’s only one
joystick in our game we can ignore
the which element of the event structure
and assume that any joystick event must
have come from stick zero (because
that’s the only one we’ve opened).

We can then use pEvent->jaxis.
value (which varies between -32768
and 32767, indicating full left, to full
right) to control the player, please see
Listing 4.

68 October 2003 www.linux-magazine.com

Creating a Game: ControlsPROGRAMMING

Function Notes
Start game Called once at the start of the level
Reset game Called whenever the level gets reset,

after the player dies for example
Update Move or animate the object
Draw Draw this object to the screen
Destroy Free any memory we’ve allocated in

start game

Table 1: Callbacks

typedef struct sOBJECT {
/* Setup - data doesn't change
*/
int init_x, init_y; /* Start
position */
SDL_Surface *pGfx; /* points to
an existing surface */
void *pBhvSetupData;

/* State - gets reset */
int x, y; /* Current position */
void *pBhvStateData;

/* Admin */
EX_OBJ_VTABLE VTable;

/* Linked list component */
struct sOBJECT *pNext;
} EX_OBJECT;

Listing 6: EX_OBJECT

typedef struct sDHE_STATE {
int iDirection; /* the direction he's walking, -1 for left,+1 for right
*/
int iAnimFrame; /* Current animation frame, maps directly to a region */
int iAnimDir; /* The animation ping-pongs between frames 0->1->2->3-
>2->1->0. Will be -1 or +1, depending on direction */
} EX_DHE_STATE;

Listing 7: Walking enemy

Figure 1: Our game so far

nicely: we start the game, process an
update-draw loop, and then exit. We have
no distinction between level and game,
since each level is a mini-game in itself.
The list also demonstrates that we have a
two-level hierarchy of data: setup and
state. Setup data is created at the start of
the game and includes things like the SDL
surface or its start position. In contrast,
the state data includes things that change
during the game, like the current position
or direction.

This outlines the information we need
for our EX_OBJECT structure. Every
object in the game will use this generic
structure, stored as part of a linked list,
with the callback functions nicely
hidden inside another structure (EX_
OBJ_VTABLE), as shown in Listing 6.

Here we’ve created the commonly
used setup and state variables inside the
EX_OBJECT structure, and marked the
others with void pointers. It will be the
responsibility of each behaviour to allo-
cate memory for these pointers, and
create structures that the behaviour itself
can understand. Taking the example of
an enemy that walks blindly from left to
right. See Listing 7. This dumb horizon-
tal enemy (DHE) will initialize its state
on every reset from the setup data that
we have defined as such Listing 8.

As a language, C does not provide any
mechanism to stop you changing setup
information during the update cycle
(where you should only be changing the
state), nor does it prevent you from
changing state data during the render
cycle (where you should not be changing
anything). We therefore have to rely on
common sense and polite programmers!
But there is one language feature we can
use to focus development.

The Table
The word VTable is short for ‘virtual
table’, and is borrowed from C++. It is

a way of calling specific functions on
specific objects, without having to spec-
ify them at compile time. This allows for
a certain level of abstraction. Each object
does this by setting up the pointers to
private functions like Listing 9:

We declare each of the functions
(dheStart, dheUpdate and dheDraw) as
static to make its name invisible to any-
thing outside the current file. This
ensures we can only call these functions
by dereferencing the VTable, thus:

pObject->VTable.Start(pObject);

To prevent us dereferencing NULL, or
otherwise invalid, function pointers, we
prepare a set of default callbacks upon
creation. Each object can then replace
(or overload) these function pointers
with its own.

This method may appear redundant,
since it requires two instances of
pObject, but it is usually more efficient
than adding switch statements around
every call to Start, Update, or Draw. It
also scales well if we add new function-
ality to the object through its VTable. We
can always use a small wrapper function
to prevent the occasional bug where one
object’s VTable is used, but is passed the
pointer of another.

void exDrawObject(EX_OBJECT U

*pObj)
{
pObj->VTable.U
Draw(pObj);
}

Driven By You
Just because each DHE uses the same
code, doesn’t mean it uses the same
data! We already have a structure for the

setup information, so if we have a way of
changing this initial data then we can
introduce a great deal of variety into our
game, making it data-driven. Well, that’s
no sooner said than done, as we can
extend our Bhv_CreateDumbHorizontal
function above to include a set of para-
meters, such as speed and direction.

In order to make these parameters gen-
eral across all behaviours, we’ll create
them as string of characters and let the
behaviour parse them into something
meaningful. In this way we could also
read them directly from a text file to
make customisable game levels a very
simple prospect.

All behaviour-based objects work
using exactly the same methods –
although some will require more code
than others. The player, for example, will
require us to handle collisions with the
world, handle the pickups, and handle
contact with the enemies. We’ll get a
handle on that next month! ■

69www.linux-magazine.com October 2003

PROGRAMMINGCreating a Game: Controls

typedef struct sDHE_SETUP {
int x1,y1,x2,y2; /* extents for
enemy */
int iInitialDir; /* -1 for left,
+1 for right */
int iSpeed;
} EX_DHE_SETUP;

Listing 8: Dumb
horizontal enemy

BOOL Bhv_CreateDumbHorizontal(EX_OBJECT *pObj)
{
/* ... other initialisation stuff ... */
pObject->VTable.Start = dheStart;
pObject->VTable.Update = dheUpdate;
pObject->VTable.Draw = dheDraw;
/* ... */
}

static void dheStart(EX_OBJECT *pObj) { /* ... do stuff ... */ }
static void dheUpdate(EX_OBJECT *pObj) { /* ... do stuff ... */ }
static void dheDraw(EX_OBJECT *pObj) { /* ... do stuff ... */ }

Listing 9: Setting pointers

We’ve made one addition to the update
function this month. It is a parameter to
control time. Usually, each call to the behav-
iours Update() function would perform one
frames worth of activity. However, in
extreme cases the game could have taken
two frames to process the last image.This
would require the Update() function to get
called twice within a single frame to com-
pensate.

However, calling Update() twice doesn’t
allow the behaviour to optimise itself effec-
tively. So instead we call it once and ask it to
update N frames. Games that have a finer
granularity would pass a floating point
number (indicating seconds elapsed) to
their update functions.

Box 2: About Time

