
Moving from position A to position B
is not as simple as you’d think. And it
certainly isn’t as simple as it was when
platform games like Manic Miner first
came out, but the basic princi-
ples are the same. We assume
that the player will start in a
safe (collision-free) location in
the level, and require that we
will still be in a safe position
at the end of each frame.

If we can’t find a new safe position,
then we must revert to our original loca-
tion (assuming this location is still safe),
or kill the player. This is game design
decision, not a technical one. As games
have become more complex, with more
and more moving objects, this problem
has become more difficult. When true
3D games became available, this com-
plexity increased by several orders of
magnitude. Even today, commercial
games have to cheat with their collision

systems to make them playable on a rea-
sonably modern PC, or console, because
the mathematics involved is so complex.

Five to One
For our movement collision
system we shall check one
pixel at a time, looking for
collisions, and resetting to
the last known safe position
if this is not possible. This is

the approach taken by most games of
this type. Although we check one pixel at
a time, we shall move several pixels over
the course of a single frame. This allows
us to vary the speed for walking and
crawling, and move across the level in a
much more realistic manner.

Checking several positions in a frame
might appear wasteful, but it is more
reliable than just checking that the end
point is valid (see Box 1: Projectile con-
siderations) and more flexible than

SDL is a multi-media API. The bulk
of its functionality may be held
within the graphics subsystem, but

it also has libraries for sound, joysticks
and threads. However, there is no sup-
port for collision detection. This is not
surprising as that would fall outside its
scope. In the 3D arena, OpenGL, doesn’t
provide a collision detection framework
either. Writing a game without collisions
is like eating curry without beer – ulti-
mately unsatisfying!

It’s Raining Men
Collision is like the weather – it isn’t any
one single thing. The collision code to
check that the player hasn’t walked into
a wall is different from that of the player
walking into an enemy. And that is dif-
ferent from the collision of the player
picking up a key. We shall now cover
various methods of collision detection,
how they work, why that particular
method is pertinant, and where SDL
helps us implement it.

SDL provides you with the graphics components to write a game. Unfortu-

nately, there is more to games programming than a graphics engine. This

month Steven Goodwin looks at some of things that SDL doesn’t do, and

demonstrates how we can! BY STEVEN GOODWIN

More than SDL

The Hit Producer

66 November 2003 www.linux-magazine.com

Creating a Game: Collision DetectionPROGRAMMING

The problem in moving objects several pix-
els in one frame is called projectile
considerations. Imagine a bullet moving very
fast to the left. Now imagine the player
moving very fast to the right. In the real
world, the bullet would hit the player. In the
game, if we only considered the validity of
the end position, it might not!
The bullet could end up completely on the
left of the player after a single frame, and no
collision would have occurred.To prevent
this, we must write special code that checks
the entire path that the bullet travels.
Because (most of us) are more interested in
writing games than mathematical equa-
tions, we’ll use brute force to check each
point along the path.

Box 1: Projectile
considerations

SDL_Rect PlayersBoundingBox;
EX_COLLISION_LIST ListOfCollisions;

plyGetPlayerRect(pPlyObj, &PlayersBoundingBox);
exGetRectCollision(pPlyObj, &PlayersBoundingBox, &ListOfCollisions);

Listing 1: Collision or not

Figure 1 : Our character,
and his bounding box

tx = pCollisionRc->x / TheGame.iTileWidth;
ty = pCollisionRc->y / TheGame.iTileHeight;

TestTileCollision(pCollisionRc, tx, ty, pCollisionList);
if (pCollisionRc->x%TheGame.iTileWidth)
TestTileCollision(pCollisionRc, tx+1, ty, pCollisionList);
if (pCollisionRc->y%TheGame.iTileHeight)
TestTileCollision(pCollisionRc, tx, ty+1, pCollisionList);
if ((pCollisionRc->x%TheGame.iTileWidth) && (pCollisionU
Rc->y%TheGame.iTileHeight))
TestTileCollision(pCollisionRc, tx+1, ty+1, pCollisionList);

Listing 2: From exCheckCollision in collision.c



writing specific code to scan the path for
obstructions. Our function to do this is
called plyCheckCollisions.

To determine whether any particular
position is safe, we must compare the
player’s position against every tile in the
world to see if they overlap. To simplify
this problem, we shall not consider the
image data of the player, i.e. his precise
outline. We shall only look at the box
surrounding him, known as the bound-
ing box. If this box collides with the
bounding box of any tile, we will be
unable to move into this position.

This is not an uncommon trade off, as
any problems in the collision code are as
annoying for the player to play, as they
are for the programmer to program! The
player could walk
into an alcove, play a
“scratch nose” ani-
mation, and then find
that one particular
pixel is in collision
with the world, and
he can no longer walk
out. So, we specify to
the artist(s) that the player graphic
should remain within a fixed area, and
any pixels outside will not be considered
during collision detection. For the same
reason, we maintain a statically sized
bounding box throughout the game.

Our function to check for collision
works like this: We start by computing
the bounding box of the current player,
and then request details of almost every
object inside this rectangle (we’re hijack-
ing the SDL_Rect structure, even though
SDL has no collision support itself). I say

almost because the first argument to
exGetRectCollision is used as an ‘ignore’
parameter. This is because if we were to
check everything in the world against the
players bounding box there would always
be at least one collision – the player! As
this is not useful, we explicitly ignore it.

The ListOfCollisions will tell us more
about our collision state: how many col-
lisions there were, what objects they
affected (tiles, enemies, and so on) and
even the x,y location where the collision
occurred. This latter piece of information
would allow us to determine whether an
arrow hit us in the head, or the leg, for
example. We could then use this to
modify the gameplay. By having a
general-purpose collision routine such as

this, we can focus our
efforts in other areas. For
the time being, we’re only
interested in whether our
new location is safe, or not.

Inside the exGetRectColli-
sion function we can
optimize the “check every
tile in the world” code to

just check the tiles with which we over-
lap (a speed improvement that will
benefit the whole game; another reason
for using general-purpose collision
code).

exGetRectCollision works in the same
way as the ‘repair’ function we wrote
last month. We shall also ignore enemy
collisions at this stage, since we perform
a different type of collision check on
them, and it would be wasteful to per-
form this test twice.

If we’re jumping, for example, and 
we collide with something we can’t just
stop in mid-air. We have to consider let-
ting the player fall. Or if we’re jumping
up and to the left and collide, should we
try jumping straight up instead and
ignore the left movement, or just start
falling? These are all gameplay decisions,

and are implemented quite simply by
utilizing the same exGetRectCollision
function for each potential new position.
The plyUpdJumping function shows
which decisions I made for the jumping
component.

This same exGetRectCollision function
can be used for another part of the
movement collision – ground detection:
we must find out if we’re standing on
something solid, or not. This can use the
same function, but with a different colli-
sion rectangle. Principally, a small box
just below the feet, that is the width of
the player. If there is a collision, we’re
happy – the player is safely standing on
something.

If there isn’t, we must switch into a
falling state and process our collision in
the normal way as the player descends.
Ground detection highlights one limita-
tion with the bounding box collision
method, as one pixel might collide with
a surface, but the graphics do not, as
shown in figure 2.

In The Midnight Hour
It is much simpler to detect which
objects the player wants to pick up.
Although our general-purpose collision
routine would work, it’s not always the
best method, as it is unnecessary to per-
form any collision detection at all!

67www.linux-magazine.com November 2003

PROGRAMMINGCreating a Game: Collision Detection

dx = pObj1->x - pObj2->x;
dy = pObj1->y - pObj2->y;
iDistance = sqrt( dx*dx + dy*dy
);
if (iDistance < iProximity)
{ /* ... pick up is in range

... */ }

Listing 3: School day maths

dx = pObj1->x - pObj2->x;
dy = pObj1->y - pObj2->y;
if (iDistanceSquared <
iProximity*iProximity)

{ /* ... pick up is in range
... */ }

Listing 4: Pythagoras 
made easy

Figure 2: The bounding box does
not always reflect the graphics

Figure 3: Proximity Checks

if (SDL_LockSurface(pCurrentSurface) < 0)
{
fprintf(stderr, "Couldn't lock surface: %s\n", SDL_GetError());
return NULL;
}

pCollisionData = (Uint8 *)malloc(pCurrentSurface->w * pCurrentSurface-
>h);
/* pCurrSurface->pixels now points to valid pixel data for read/writing */
SDL_UnlockSurface(pCurrentSurface);

Listing 5: Collision surface array



function. In fact, it does not provide any
GetPixel function. So we need to write
one.

The first stage in the process is to lock
the surface. Locking is a method where
the surface image (whether it is stored in
video, or system, memory) is copied to a
new buffer in system memory. You can
then read, write or change the pixels in
this buffer as you need and then, when
you unlock the surface, this new data is
copied back into the original surface.

While a surface is locked, you can not
blit to, or from, it. It is the copying of this
data to and from memory that makes
locking the surface a very expensive
operation, therefore single pixels should
never be written individually. If you are
working with special bitmap algorithms
(like fractals, for instance) then compute
a large number of pixels, and write them
all into the locked surface together. For
collision (which is an exceptional cir-

cumstance), we will lock
the surface once at the
start of the game, copy the
data we need into what
we’ll call our collision sur-
face, and then unlock the
surface immediately.

Our collision surface will
be a simple array, where
one element in the array
equates directly to one
pixel in the image. A value
of zero in the array means
‘no collision’, whereas a
one means ‘collision’. For
simplicity, each element in
the array will be a byte,
although in the future we
can save memory by

reducing this to a single bit.
The pixel data (in pCurrentSurface-

>pixels) is stored in the same format as
the surface. As we have already seen (in
parts 1 and 2 of this series), each surface
may be created with a different bit
depth, so we need to understand how to
read different pixel formats.

There are two issues here. First off, we
need to know what the pixel format is:

iBytesPerPixel = U

pCurrentSurface->U
format->BytesPerPixel;
pSurfacePtr = (Uint8 U

*)pCurrentSurface->U
pixels;

With 1 byte per pixel, we’re using a
palletized surface, and so have to consult
the palette to get the red, green and 
blue components. That data is readily
available from the surface, as shown in

listing 6.
With the packed pixel

formats (2,3 or 4 bytes per
pixel) we have to perform
a little bitwise arithmetic
to isolate the individual
RGB components, and nor-
malize them so that each is
within the range 0 to 255.
Listing 7 shows this code.

The conversion routine
in Listing 7 is identical for
all packed formats. The
surface has its own combi-
nation of masks, shifts and
loss parameters to achieve

Pickups are triggered by
proximity, so as soon as
the player is within, say,
half a tile’s width (or 16
pixels) we can pick up the
object up.

The mathematical way
to check for distance is 
to use Pythagoras: “the
square of the hypotenuse
is equal to the sum of the
squares on the other two
sides”. This lets us perform
a circular check, looking
for any object within a
specific radius of our cur-
rent position.

Since the square root is
slow and only works on
floating point and double precision num-
bers we shall save time by not doing it!
We’re not interested in the answer to the
equation – only it’s result! Is it inside the
proximity radius? We can square each
side of the equation for the same result.

Space Odditity
Initially, we can use bounding box colli-
sion for the player vs enemy collisions,
too. However, since we can have a wide
range of different enemies (and only one
size of tile in which to store them), it
might be a little unfair if we introduced
fairly small graphics that could kill the
player at a distance of 30 pixels!

Similarly, if the animation caused the
enemy to squash to half its original size,
but we still considered the enemy’s colli-
sion when at its full height, that would
also be unfair. We therefore need a form
of collision that is pixel-based – and that
requires us to delve back into SDL to
determine which pixels are
transparent. Unfortunately,
it’s not as simple as, per-
haps, it could be.

Sweetest
Perfection
Pixel-based collision is
actually quite easy in the-
ory – check each pixel 
in the image and if any 
of them are opaque (i.e.
not transparent) we have
found a collision. SDL, for
all its strengths, does not
provide a simple GetPixel

68 November 2003 www.linux-magazine.com

Creating a Game: Collision DetectionPROGRAMMING

if (iBytesPerPixel == 1)
{
pixel = *(Uint8 *)pSurfacePtr;
r = pCurrentSurface->format->palette->colors[pixel].r;
g = pCurrentSurface->format->palette->colors[pixel].g;
b = pCurrentSurface->format->palette->colors[pixel].b;
}

Listing 6: Consul the palette

Uint32 pixel;
SDL_PixelFormat *fmt = pCurrentSurface->format;
pixel = *(Uint32 *)pSurfacePtr; /* Reading from a 4-
bytes-per-pixel surface */
r = ((pixel & fmt->Rmask) >> fmt->Rshift) << fmt->Rloss;
g = ((pixel & fmt->Gmask) >> fmt->Gshift) << fmt->Gloss;
b = ((pixel & fmt->Bmask) >> fmt->Bshift) << fmt->Bloss;

Listing 7: Normalizing

if (iBytesPerPixel == 2) pixel = *(Uint16
*)pSurfacePtr;
if (iBytesPerPixel == 3) pixel = (*(Uint32
*)pSurfacePtr)&0xffffff;
if (iBytesPerPixel == 4) pixel = *(Uint32
*)pSurfacePtr;

Listing 8: Reading bytes

if (SDL_MapRGB(pCurr->format, r, g, b) ==
pCurrentSurface->format->colorkey)
*pCollisionData = 0; /* this pixel is transparent */
else
*pCollisionData = 1; /* this pixel is not! */
pCollisionData++;

Listing 9: Comparing color



this unity. The only additional code
(shown in Listing 8), is needed to read
the correct number of bytes from the sur-
face pointer.

Having collected the RGB data, we can
now use the SDL_MapRGB function to
create a surface-compatible color and
compare it with the color key, writing
the result into our collision array.

After reading one pixel, we must move
onto the next one. Although this might
appear like a simple loop, it is here that
the second issue comes to the fore. That
is of the pitch, or span, of the surface.

Singing Meaningless Songs…
When a surface is created, it is not
always the size we originally requested.
Surfaces in video memory, for example,
like to be a power of two (128, 256, 512),
and so our 640x480 screen could poten-
tially be 1024x512 pixels. Since the actual
size is under control of the graphics card
there is very little we can do about it.

When using the standard blitting func-
tions, SDL will automatically consider
this for us. But since we’ve bypassed
SDL, we must be aware of what’s hap-
pening under the hood, since each line
may have an extra 384 pixels in it. The
pCurrentSurface->pitch value holds the
size (in bytes) of each line in our surface.
We must therefore increase our pixel
pointer accordingly. See Listing 10.

Our collision data (because it’s ours,
stored in our memory) does not have the

pitch problem, and so each byte can be
stored sequentially. For reference, the full
function is called exCUBuildCollisionSur-
face, and located inside collision.c.

Wiggle It ( just a little bit)
We now have to write our exCCBound-
ingBox2Pixel function, to determine if
there are any lethal enemy pixels inside
our players bounding box. Again, SDL
offers no support for this, and so it is up
to us to read through each pixel manu-
ally. There are two shortcuts we can
take, however. The first is that we can
check the bounding boxes of each object
first, before we do anything else. If these
do not intersect, then the pixel-perfect
collision test is a waste of time, and we
can exit the function early.

The second optimization is to check
only the area of pixels where both
bounding boxes overlap, i.e. the union
set. SDL doesn’t provide any functions to
compute this union, but we can do it
ourselves fairly simply by considering
each case separately: is the enemy above
or below the player? Is the enemy to the
left or right of the player?

Having found the area to check,
(x1,y1) to (x2, y2), we must now find
the first pixel in our collision data that
pertains to the (x1, y1) position (listing
11), and then iterate through each pixel
in turn. Having stipulated a consistent
width of 640 for our graphics has an
extra bonus here too! Since our collision

data relates directly to the graphics sur-
face, every line of collision data is always
640 pixels, which makes it easy to move
from one line to the next.

Our collison detection loop (listing 12)
has many echoes of the code to create a
collision surface, while the computation
of x1,y1 borrows code from the
exDrawTile code – both should be easy
to follow. See the collision.c file.

One alternative solution is to create an
8-bit surface with SDL_CreateRGBSurface
and write the collision data into it, per-
haps with a blit, or a lock-unlock
combination. The surface can then be
locked for the entire duration of the
game (because nothing will ever blit to,
or from, it), in order to save processor
time. There’s always more than one solu-
tion to a problem. As an exercise try [1]
and go to the sources/sdl folder. ■

69www.linux-magazine.com November 2003

PROGRAMMINGCreating a Game: Collision Detection

[1] http://www.bluedust.com/pub

INFO

pSurfacePtr = (Uint8 *)pCurrentSurface->pixels;
for(y=0; y<pCurrentSurface->h; y++)
{
for(x=0; x<pCurrentSurface->w; x++)
{
/* ... read the pixel data as above .. */
pSurfacePtr += iBytesPerPixel;
}
/* Move onto the next line */
pSurfacePtr -= pCurrentSurface->w * iBytesPerPixel; /* rewind to the
beginning of the line */
pSurfacePtr += pCurrentSurface->pitch; /* pitch is already in bytes */
}

Listing 10: Increasing the pixel pointer

pColData = pCollisionData;
pColData += (iRegion%TheGame.iNumTileWidth) * TheGame.iTileWidth;
pColData += (iRegion/TheGame.iNumTileWidth) * TheGame.iTileHeight * 640;
pColData += x1;
pColData += y1 * 640;

Listing 11: Finding x1 and y1

for(y=y1;y<y2;y++)
{
for(x=x1;x<x2;x++)
{
if (*pColData)
{
/* Collision found!! Store

it!!! */
return TRUE;
}
pColData++;
}
pColData -= (x2-x1);
pColData += 640;
}

Listing 12: Collision
detection loop

Figure 4: A Union Set


