
dows and Macintosh platforms have
binary versions available for download
at [1]. Everyone else will have to com-
pile from source. You should also
download and install libvorbis [2] (if you
wish to use Ogg Vorbis files), and
SMPEG [3] (for MP3 playback) as
SDL_mixer does not contain its own
decode algorithms.

Installation from source is recom-
mended and uses the familiar trio of,

./configure
make
make install # as root

SDL_mixer, like SDL before it, is easy to
set-up, and holds no surprises. You can
test your installation with the simple sdl-
wav example, located in the demos
directory. With that compiled and work-
ing, we can move back to our game, and
start to rescue Explorer Dug!

Peel me a grape
Before we proceed, we must initialize
the audio subsystem in the same manner
as we’ve done previously for graphics

and the input driver. This needs to be
done because, although we’re not using
SDL’s audio capabilities, SDL_mixer is.
See Listing 1.

We then need to initialize the
SDL_mixer library itself. Following in the
style of SDL, this function will also
return a negative number in case of
error. See Listing 2.

The parameters given here are fairly
standard and only need to be changed in
exceptional circumstances. For reference,
22050 refers to the playback frequency of
the buffer, which is the number of indi-
vidual samples that should be played
every second to recreate the sound (see
Figure 1). This should be either 44100
(for CD-quality audio), 22050 (for
medium quality audio, as normally used
in games) or 11025 (for very slow
machines). Naturally, the higher the fre-
quency, the more data needs to be
processed and the slower your game will
run on older machines.

Parameter two (MIX_DEFAULT_FOR-
MAT) tells SDL_mixer in which format
the primary buffer is going to be. The
default format indicates that it will use

Films and games. It is a common
analogy. And with the increase use
of cinematics in games, and com-

puter graphics in films, it shows no sign
of abating. It is somewhat fitting, there-
fore, that the series ends on sound, an
area traditionally left until the final pro-
duction phases on both films and games.

Bridge Over Troubled Water
The first observation to make of our
audio code for SDL is that we have
ignored SDL! The audio support in the
generic SDL package provides only very
low level access to the sound card by
providing a single audio buffer. This is
not suitable for our game, as (among
other things) we want several different
sounds playing at once. Instead, we shall
be using SDL_mixer. This is one of the
many libraries currently available, and
was written by Sam Lantinga, the origi-
nal author of SDL, with Stephane Peter
and Ryan Gordon. It can be downloaded
from [1], and sits directly on top of SDL
using only the single buffer functionality
contained within it.

Conceptually this is achieved by creat-
ing a single (primary) buffer which maps
directly to SDL’s standard audio buffer.
This buffer loops, and is always playing.
It then creates several additional (sec-
ondary) buffers which are then mixed
into the primary buffer. Each of these
secondary buffers is termed a channel.
The mixing works simply by taking the
next chunk of sample data from each
channel, summing them (with weight-
ings proportional to their volume), and
then dividing the number of channels.
The play pointer then moves on to the
next chunk. Writing such code is a lot of
work, and as the best programmers are
lazy, we shall avoid re-inventing the
gramophone and use SDL_mixer.

Building SDL_mixer as a wrapper
around the basic SDL functionality
means that any platform that supports
SDL will also (by definition) support
SDL_mixer. However, only Linux, Win-

In this, the final part of our series, Steven Goodwin looks at programming

game audio, and adds some final polish to our game. BY STEVEN GOODWIN

Creating a Game: Programming with SDL audio

Hear the Noise

68 December 2003 www.linux-magazine.com

Creating a Game: AudioPROGRAMMING

if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0)
{
fprintf(stderr, "Couldn't init SDL audio: %s\n",

SDL_GetError());
}

Listing 1: Initialise the audio subsystem
if(Mix_OpenAudio(22050, MIX_DEFAULT_FORMAT, 2,512) < 0)
{
fprintf(stderr, "Couldn't open SDL_mixer audio:

%s\n", Mix_GetError());
}

Listing 2: Initialise the SDL_mixer library

Figure 1: This sound has 16998 samples, and lasts for 0.77 seconds when played back at 22050 Hz

16 bits (one of which will be treated as a
sign bit, giving a range of -32768 to
32767) in system byte order – which by
no coincidence is the format used in
WAV files! To minimize the processing
required when mixing samples into the
primary buffer, all sounds will be stored
in memory in this format. Any conver-
sion required will occur at load time.

The third parameter refers to the num-
ber of output channels, 2 for stereo, 1 for
mono, and is quite self-explanatory.
Finally, our fourth parameter (512) is
called the ‘chunk size’. The sound card
needs sample data before it can start
playing, so to prevent continual use of
the bus for audio data, it is copied in
chunks. These chunks can be large or
small. Small chunks mean the time
between the function being called, and
us hearing it, is also small. It has a low
latency.

However, small chunks also mean that
the sound card needs to be fed more reg-
ularly because each chunk doesn’t last
for very long. If the sound card isn’t fed
enough data (because your processor is
too slow, for example) there will be
small gaps in the sound. Conversely,
large chunks avoid these gaps, but at the
expense of a higher latency. 512 is the
default.

Note the use of Mix_GetError in the
event of a problem. It calls exactly the
same function as SDL_GetError, and
used solely out of style.

Like the joystick code we’ve already
written (Linux Magazine, Issue 35, page
66), sound is not a necessary part of our
game. That is not to say it isn’t necessary
in any game. Like the film industry,
music and sound effects are essential in
being able to draw the player into the
world we have created for them. Listen
to a horror film with the sound off. Is it
still scary?

Being realistic, however, our game is a
simple platformer, whose target operat-
ing system is more used to web servers
and Internet applications. These are
machines whose sound cards are gener-
ally very poor, or non-existent. So if the
sound card can not be initialized we
must make a note of the fact, and decline
any invitation from the game to use it.
This is very important within SDL, as
most of the SDL_mixer functions will fail
(often fatally) if you try to use them

without a fully working audio subsys-
tem. We shall see some specific
examples shortly. Suffice to say, that
when (or if) we succeed in establishing
the audio driver, we set a flag thus:

TheGame.bHaveAudio = TRUE;

We then wrapper every SDL_mixer func-
tion with our own code, which performs
a validity check to prevent any problems.
This layer of abstraction is good
programming practice regardless of
whichever API we use, as it minimizes
the amount of work required, should we
ever need to switch to OpenAL, or simi-
lar API. An example can be seen in
Listing 3, and throughout audio.c.

Because every entrance has an exit, we
should acknowledge the existence of our
close down function Mix_Close, which is
called without parameters just before the
program ends.

Carry that weight
There are two types of data that SDL can
handle, sounds and music. Sounds are
special effects, like footsteps, jump
noises and the exit gate opening. They
are stored as WAV, AIFF, RIFF, OGG or
VOC files on the disk, and loaded into
memory at the start of a game. We can
play several of these at once. Music is
slightly different, inasmuch as we can
only play one piece of music at a time.

However, this music is usually stereo,
and can additionally be in MP3 or MOD
formats. Music can also use an external
decoder for playback, whereas normal
sounds can not. This distinction occurs
because the sounds being played in
game are much shorter and need more
control (like volume changes). Having
an external application support all the
necessary control features (plus the over-
head of spawning additional processes)
makes this an unwise proposition. Let’s
start with the simpler case – music.

We shall use music for two purposes
in Explorer Dug. The first is to accom-
pany the intro (and outro) screens,
where we shall display the ‘Welcome to
the game’ image until the music has
completed playing. Secondly, it is used
to provide a piece of looping background
music for the level. The first case covers
all the basic principles of music play-
back.

Our first check to make sure the audio
system was correctly initialized is very
important. Without it SDL will crash!
Most SDL_mixer functions, even those
concerned with loading files, require the
library to have been setup before use.

The second parameter to our
Mix_PlayMusic function is the loop
count: how many times do we want to
loop it. Under SDL, the loop count is
meant to be taken literally. A value of
one means ‘one loop’ – that is, play the
music twice. Similarly, a value of two
means ‘two loops’, or play the music
thrice. This can seem confusing at first,
but we’re only interesting in two cases –
no loops, and loop forever – so we use
zero (no loops), to play it once, and
minus one to mean an infinite number of
loops. The latter case shall be used for
our background music.

Since there can only be one piece of
music playing at any time, the Mix_Play-
ingMusic function does not need to be
told which piece of music to check for.
The rest of the code in Listing 1 is fairly
self-explanatory.

Prisoner Cell Block H
Although Mix_PlayMusic supports sev-
eral file formats (including WAV, MP3

69www.linux-magazine.com December 2003

PROGRAMMINGCreating a Game: Audio

01 BOOL exPlayMusicAndWait(const
char *pName)

02 {
03 Mix_Music *pMusic;
04
05 if (!TheGame.bHaveAudio)
06 return FALSE;
07
08 pMusic = Mix_LoadMUS(pName);
09 if (pMusic &&

Mix_PlayMusic(pMusic, 0) == 0)
10 {
11 while(Mix_PlayingMusic() ==

1)
12 {
13 SDL_Delay(100); /* let

the cpu breath */
14 }
15 Mix_FreeMusic(pMusic);
16 return TRUE;
17 }
18
19 return FALSE;
20 }

Listing 3: Playing music

inaudible during the filming, or to add
sounds to events that are not audible in
real life, but the audience expects to be
there – like the low pitched hum of a Star
Destroyer while in the vacuum of space.
A computer game is no different.

Creating sound assets for a game can
be more difficult than designing graph-
ics. Usually we have to suffice with
various drums and percussion sounds
from a synthesizer, or soundfont. Some
people have the time and money to
record the sounds themselves, but sound
design is a rare and specialist skill, espe-
cially since many of the required sounds
can not be re-enacted literally for the
microphone (like those of gun shots or
helicopters).

Games developers often buy sound
libraries on CD. These are produced (and
used) by film studios such as Universal
and Lucasfilm and can be very expensive
to buy. They are of a very high quality,
but also quite well travelled, and is not
uncommon to recognise these stock
sounds in different movies and videos
games. Those of us on a budget can
often find sounds of a reasonable, if lim-
ited, quality on the Internet, at sites like
[4] and [5].

Because each sound effect needs to be
synchronized to a visual event, we need
the lowest latency possible. Since we
can’t change the format of the primary
buffer, the quickest way to start a sound
playing is to load each sound into mem-
ory at the start of the game. This
minimizes the effect of the hard drive
seek times, its load time, and any con-
version processing that needs to occur.
Resourcing sounds in code is very easy.
We simply create a list of the events that
can cause a noise (for example, the floor
breaking), and then assign it to a specific
sound effect file.

typedef enum {eSndPlyJump, eSndU
FloorBreaks, } tSoundFX; /* U

complete list in explore.h */

TheGame.pGameSounds[eSndFloorU
Breaks] = Mix_LoadWAV("snd/U
floorbreak.wav");
TheGame.pGameSounds[eSndPlyU
Jumps] = Mix_LoadWAV("snd/U
plyjump.wav");

Using enumerations in this manner

makes the code more meaningful. We
can store these id-filename pairs in a
small array, and load them using the
exResourceSounds function, in audio.c.
We can use this same enumeration to
reference the array when we wish to play
the sound.

Mix_PlayChannel(0, TheGame.pU
GameSounds[eSndFloorBreaks], 0);

We’ll see the details of this function in a
short while.

Robert DeNiro’s Waiting
The maximum number of simultaneous
sounds that can be played is limited by
software. Which also means it is limited
by the speed of our processor. This is a
limit determined by SDL however, and
not games in general. In the same way
that graphics can be held in either a soft-
ware surface, or a hardware surface,
audio channels can be mixed in software
or hardware. When sounds are mixed in
software, each sample is combined by
the CPU into a single primary buffer.
This limits the number of sound chan-
nels according to your CPU, and
whatever other processes are running on
it.

Hardware mixing occurs on the sound
card itself, and is limited by whatever
(arbitrary) specification the manufac-
turer used when designing it. This is
very likely to be different on every

and OGG), the list is not exhaustive, or
future-proof. To play music in other for-
mats you need the Mix_SetMusicCMD
function (to specify an external music
player) and the tool itself. This tool must
respond to specific signals in order to
pause, resume and stop the music from
playing (as noted in Table 1).

It is a very primitive method of con-
trol, admittedly, and as such can not
support any form of mixer settings, vol-
ume control or callbacks. If you want
cross-platform support, your tool must
also exist on those platforms which sup-
port signals. Consequently, it is only of
minor, or niche, interest.

Mix_SetMusicCMD("name_of_playerU
_software"); /* All calls to U

PlayMusic are now routed to theU
external player */
Mix_SetMusicCMD(NULL); /* Back U

to internal playback control */

Axel F
Have you ever watched a film and
noticed how doors always squeak? How
a karate kick makes a ‘swish’ noise? And
every key on a computer keyboard
makes a click sound? This is thanks to a
gentleman called Jack Foley, who
worked as a sound editor at Universal
Studios and discovered that in the con-
fined environment of a film, audiences
expect to hear these sounds because they
can see them. So these effects (and oth-
ers) are recorded onto the film
soundtrack live by sound engineers in a
technique known as Foleying.

The process also involves re-creating
live sounds onto film that may have been

70 December 2003 www.linux-magazine.com

Creating a Game: AudioPROGRAMMING

Action Name of signal sent
Stop SIGTERM
Pause SIGSTOP
Resume SIGCONT

Table 1: Signals for external
music players

Volume groups allow us to mix channels
according to the purpose of each sound.
Examples of different volume groups would
be speech, music, menu screens, and special
effects. Many games allow you to change
these volume levels independently, and the
volume group feature encourages this.

All Together Now

Hooks provide a method of changing the
sample data before it is mixed into the pri-
mary buffer.This could be to add some form
of effect (like reverb, echo, or phasing) or re-
write the data entirely with your own
algorithmically generated sounds! Instead
of changing the data, you could read it into
another buffer for rendering to the screen in
the form of a bouncing waveform, or oscillo-
scope.

Hooks can also be used to trigger a callback
function that indicates a sound has finished
playing.This is very useful to play other
sounds, or trigger events, at specific times.
This becomes more important when the
sound is a piece of speech that could get
localized into another language. Remember,
however, that such events will not occur if
you provide the facility to switch the sounds
off, or have been unable to create the audio
subsystem.

Hooks

machine, and might not exist on non-x86
architectures. Therefore, SDL has
thoughtfully limited itself to software
mixing, which by default will support 8
sound channels. We can change this
limit with the following function.

Mix_AllocateChannels(16);

You can change the number of supported
channels at any time, and since they are
mixed in software, there is no additional
overhead in doing so. Obviously, if you
reduce the value below the total number
of currently playing channels, you will
lose some of them. It is recommended,
however, that you keep the number of
channels constant throughout the game,
since this will make bug hunting easier.
The channels used for playing music do
not come out of this quota, but are
mixed into the primary buffer in the
usual way.

In a professional game, the sound
engine would be more complex than
this. There would need to be additional
code to handle playback when all the
allocated channels are in use. This often
works by storing the sound data in a
‘waiting’ state. Then, when a channel
becomes available (say after 2 seconds),
it would start playing the sound 2 sec-
onds from the beginning.

Loops of Fury
When the player jumps, or falls, we want
a continuously looping sound. In the
“golden age” of games development
such effects were created by program-
mers tweaking the parameters of the
sound chip, or speaker, directly. Individ-
ual tones would be played according to
the height of the player, for example.
With audiences now expecting better
quality audio, computer-generated
bleeps have been replaced with musi-
cian-generated samples and real
instruments.

This has a down side. As modern
hardware is geared towards sample play-
back, much of the low level flexibility
has been lost. Changing the pitch of a
sampled sound by more than a few semi-
tones causes it to break up, creating
aural artifacts. To achieve a similar
effect, we’d have to use several samples,
each of a different pitch, as SDL_mixer
does not provide enough support to

change the pitch of a sample. To achieve
this level of control we would have to
write custom code to mix our sample
into the primary buffer, or use hooks
(see BOXOUT: Hooks). This is too much
effort for our little game! In this case, we
seek an alternative method which
involves looping a sound using the usual
Mix_PlayChannel function.

int Mix_PlayChannel(int channelU
, Mix_Chunk *pChunk, int numberU
_of_loops);

In Explorer Dug we have elected to play a
very short sample, which we then loop
continuously while the character is in
the process of jumping or falling. When
Dug lands, we stop the sample, play a
footstep sound, and continue. To achieve
this effect, we need to store which chan-
nel the looped sound is playing on. This
we can do by either specifying the chan-
nel ourselves (which means we must
manually keep a list of which channels
are free, and which are in use), or letting
SDL pick the first free one. The latter is
certainly the easiest, and as the
Mix_PlayChannel function provides this
functionality we might as well use it.

To earn this feature, we pass a -1 for
the channel index, and it returns which
free channel was used. This index is then
used as a handle, so that if we wish to
change the parameters of the sound (for
example, its volume) we can do so. We
can not use the sample data (pChunk) as
a handle since one sound can have sev-
eral instances, playing on different
channels.

Being able to use specific channels can
be of use in more complex games. We, as
the programmer, can allocate particular
channels to specific groups of sounds.
This is a win-win situation because
(aside from never running out of chan-
nels) we can specify a channel (for
example, 5) as only ever being used for
the player speech. This makes is easier
to determine if the playing is talking, and
to prevent him saying two different
things at the same time.

The number_of_loops parameter func-
tions identically to the Mix_PlayMusic
function earlier. See Listing 4.

Once the sound is playing, we can stop
it at the appropriate time with
Mix_HaltChannel(iChannel). One issue
to be aware of is that this function
appears (on certain occasions) to stop
the sound after the current iteration of
the loop has been played. It is best to
keep looped samples fairly short, to limit

71www.linux-magazine.com December 2003

PROGRAMMINGCreating a Game: Audio

int exPlaySound(tSoundFX id, int
x, int y, BOOL bLoop)
{
int channel;
if (!TheGame.pGameSounds[id] ||
!TheGame.bHaveAudio)
return -1;
channel = Mix_PlayChannel(-1,
TheGame.pGameSounds[id], bLoop?-
1:0);
Mix_Volume(channel,
MIX_MAX_VOLUME);
return channel;
}

Listing 4: Looping sound

Not all games will want, or be able, to take
over the full screen. In these cases, the game
will run in a window, and to this end SDL has
thoughtfully facilitated control of the win-
dow manager.To make sure SDL works
across multiple platforms; however, only the
basic functionality is supported, including
caption bar text, and the window icon.
SDL_WM_SetCaption("Explorer DugU
- by Steven Goodwin, for LinuxU
Magazine", "Explorer Dug");

We have two parameters here. Both provide
the text for the caption bar.The first is found
in all the usual situations.The second is
more evidence of the Windows genealogy,
as this is used for the title when the window

is iconified. Under X Window this maps
directly to the XSetWMIconName function,
which is not used by all Window managers.
The transparency on the icon will be gov-
erned by the color key of the surface.This is
no different to the blitting code we’ve
already seen in parts 1 & 2 of this series.
However, the SDL_WM_SetIcon function also
supports a bitmask (instead of the NULL
parameter we currently pass) which can be
used for transparency.The format of this bit-
mask is described fully in the SDL
documentation. See Listing 5.
Even if you don’t anticipate running in a win-
dow, such code should still be included as it
provides an extra coat of polish to your code.

Adding Polish – The Window Manager

simple scaling code in which the
screen’s X position (from 0 to 639) maps
to a volume (o to 254) for the right
speaker. The volume of the left speaker
can then be calculated from this as,

left_volume = 254 - U

right_volume;

The SDL documentation suggests calcu-
lating from the left hand side first, but

the numbers are exactly the
same.

right = (254*x) / TheGameU
.iScreenWidth;
Mix_SetPanning(channel, U

254-right, right);

As with collision, the problem of
spatial audio becomes more
complicated when considering

the third dimension. However, unlike
collision, SDL provides some helper
functions (Mix_SetDistance and Mix_Set-
Position) for us. They calculate the
volume and pan information based on
the objects distance and orientation from
the player.

Some readers might care to note that
the linear SDL method of modelling vol-
ume falloff is not the only one. The most
commonly quoted process is to specify
two distances for each sound – an inner
range and an outer range. When the
player is within the inner range, the
sound plateau is at its maximum vol-
ume. If the listener is outside the outer
range, the sound is inaudible. Anywhere
inbetween the volume is scaled. This
makes the sound more realistic.

A whisper might have an
inner radius of 5cm, and an
outer radius of 50cm, while a
rocket would have a very large
inner radius (probably in the
hundreds of metres), and an
equally large fall-off.

Rebel without a pause
Finally we consider functions
which pause, and un-pause,
the game audio. They are
Mix_Pause, and Mix_Resume
respectively. Both functions are
simple to use, and can pause
individual sound channels, or
all of them at once. The latter

being useful while the game is paused.
There are also equivalent functions to

pause the music track (Mix_PauseMusic
and Mix_ResumeMusic), which in the
case of an external music player will
send signals (as given in Table 1) to the
application. To test this feature a small
in-game menu has been added to the
code (activated with the escape key)
which allows you to pause, restart or exit
the level.

Free As a Bird
Explorer Dug is not just a magazine arti-
cle. It is free software. All the code in this
series is available under the GPL. You are
encouraged to add, amend, delete, and
generally mess around with the game as
you see fit. Create new game levels,
change the background, add new sounds
or program new types of enemies. I shall
be maintaining the project for as long as
there is interest, so email me at [6] and
download the latest version from [7]. I
hope to have illuminated some of the
murky depths of games development. ■

this side effect. To minimize it
further we also reduce the vol-
ume of the channel to zero. The
“appropriate time” in our game
is when the player has stopped
falling, or when he’s hit an
enemy and died. We have to
cater for both cases, which
explains the multiple appear-
ances of our wrapper function,
exStopSound.

Out of Space
Now is the time to add some
dimension to our sounds. Since
the birth of stereo, musicians
and film makers have revelled
in the ability to position a sound any-
where in the stereo field. We can do this
in games, too! It is known as spatial
audio. At the time of writing however,
support for 5.1 sound cards under Linux
is minimal, and the support for it under
SDL is non-existent! We therefore must
be content with the ability to pan sounds
left or right. This can be done with the
function,

Mix_SetPanning(channel,
leftU
volume, rightvolume);

The pan value we shall calculate
is based on the position of the
object on the screen. In 2D this is
very simple: any object on the
left of the screen plays its sounds
from the left speaker, and any
object on the right of the screen
plays… well… you get the idea!

To create a genuine stereo pan the left
volume must decrease at the same rate
that the right volume increases, each
being a value between 0 and 254 (which
ensures that the half way point, 127, is a
whole number). We then need some

72 December 2003 www.linux-magazine.com

Creating a Game: AudioPROGRAMMING

[1] SDL_mixer: http://www.libsdl.org/
projects/SDL_mixer/

[2] libvorbis: http://www.vorbis.com/

[3] SMPEG: http://icculus.org/smpeg/

[4] Online sound effects library:
http://www.sounddogs.com/

[5] Flash Kit Sound Effects:
http://www.flashkit.com/soundfx

[6] Email feedback:
explorerdug@bluedust.com

[7] Explorer Dug:
http://www.bluedust.com/pub

INFO

The Explorer
Dug icon. It is
32x32 pixels
for Windows
compatibility

Figure 3: The completed game

SDL_Surface *pImg;
pImg =
SDL_LoadBMP("gfx/dugicon.bmp");
SDL_SetColorKey(pImg,
SDL_SRCCOLORKEY, SDL_MapRGB(pImg-
>format, 0, 255, 0));
SDL_WM_SetIcon(pImg, NULL);
SDL_FreeSurface(pImg);

Listing 5: Running in a
window

