
we shuffle the numbers along and
continue working. The decimal point
therefore appears to ‘float’ to wherever it
is needed. This model for arithmetic is
called floating-point.

float fValue = 14.5f;
/* Declaring a floating-point
variable in C */

Internally, each floating-point number is
stored in what is known as IEEE 754 for-
mat. For single precision (32 bit)
floating-point numbers, this format is
detailed as in Table 1.

The two halves (E & M) of the number
do not relate to values before and after
the decimal point. The mantissa (M)
refers to the entire number (with decimal
points removed), and the number of dec-
imal places it needs to be moved by (and

Alot of algorithms (especially
those in science and multimedia)
require the use of floating-point

numbers. That is, numbers featuring a
decimal point, like 9.2 or 0.65. We
humans use them as if they were any
other number: we perform arithmetic in
the same way as we would for the num-
bers 92 or 65 – we just move the decimal
point to the right place afterwards.

For a computer, this level of calcula-
tion is quite complicated, and in the Intel
family, CPUs from the i486 onwards have
included a floating-point unit (or FPU)
to exclusively perform such calculations
very quickly. The FPU unfortunately,
consumes a lot of power, and as a result
is not found on a number of mobile
processors, such as those often found in
PDAs.

Although the absence of an FPU is not
usually a problem for text editors and
HTML clients; MP3/Ogg players and
graphic applications (especially those in
3D) make extensive use of its features,
slowing our once nifty Linux PDA to a

In this article, Steven Goodwin looks

at fixed-point processing and how it

can be used to improve performance

in PDA-based applications, how it

differs from floating-point, along

with the issues involved in porting

software from one to the other and

how to overcome them. A reasonable

understanding of C and mathemati-

cal theory is required in order to

follow the examples.

BY STEVEN GOODWIN

Floating Point Processing

Numbers everywhere!

599
82389
5

299

123

123

456 789

9 7

3

2
1

42 0579

299

23 456

789 97

5

214
6

0

579

65www.linux-magazine.com January 2004

PROGRAMMINGFloating Point Processing

crawl because because the processor has
to perform these calculations manually
by using floating-point emulation.

Instead of letting the processor
perform emulation, it is possible to re-
write portions of each algorithm to use
fixed-point numbers. These look (to the
processor) like normal integers (i.e.
without a decimal point) and so no emu-
lation is needed because they are
processed directly. This in turn should
put the whiz back into our whiz-bang
application.

Here, There and Everywhere
When performing arithmetic on paper
we will arbitrarily move the decimal
point around according to the demands
of the problem. Sometimes there are
more numbers after the decimal point,
and sometimes there are more preceding
it. We do this automatically – and as
soon as we reach the edge of the paper,

66 January 2004 www.linux-magazine.com

Floating Point ProcessingPROGRAMMING

in which direction) to re-create the origi-
nal number is called the exponent (E).
The number can then be derived as if it
were written in scientific notation:

N = -1<+>S<+> * 1.M * B<+>E<+>

Where S is the sign, M is the (normal-
ized) mantissa, B is the base (or radix)
and E is the exponent. So for example:

Sign: 0 (positive number)
Exponent: -1 (divide by ten)
Mantissa: 145

N = 145 * 10-1 = 14.5

This is only a broad overview of the for-
mat, however. The IEEE standard
explores a number of additional concepts
(such as normalization and bias), and
introduces special bit patterns to repre-
sent numbers such as infinity, and NaNs
(Not a Number)! If you wish to study
floating point in more depth, then please
refer to one of a number of good articles
[1] and [2] on the web that explore this
in (excruciating) detail!

Floating-point provides an incredible
range of numbers (up to 3.402823… *
1038), but with the drawback of limited
precision – that is, not every distinct
number can be represented exactly. This
can either be a mild nuisance, or the
biggest pain you’ve ever had, depending
on your application.

If you’re measuring the solar system,
adding the width of atom will make no
difference to your calculations – floating-
point representation will not be able to
resolve the difference in magnitude
resulting in an unchanged solar system.
However, if you are working at the level

of atoms, then adding another atom will
work, because, relatively speaking, their
exponents are very close.

One of the annoying issues with float-
ing-point occurs when a fairly small
number, like 2.8, can not be shown
exactly, and is rendered on screen as
2.7999999999999. This occurs because
although 1.4 may be exact in base 10
(that we work in), it isn’t in base 2
(which the computer does). Refer to the
IEEE standard below to see how 1.4
would be represented internally, in order
to demonstrate this fact.

If floating-point is not enough, how-
ever, there is always the possibility of
using double precision numbers or dou-
ble-extended precision.

As you can imagine, arithmetic on two
numbers in this format requires a lot
more work than not using it. The FPU
has to consider different size exponents,
overflowing mantissas, both sign bits
and the evaluation of a new exponent –
in addition to the actual arithmetic that
we are trying to handle!

Stuck in the middle
Fixed-point, by contrast, works by speci-
fying a consistent number of bits before
and after the decimal point across the
whole range of numbers. The integral
part will always be (say) 12 bits, and the
fractional part will always have 20 (see
Box 2: Banana Splits). This limits the
range of integers available, but benefits
from an increased precision, since every
single number in this range can be repre-
sented.

The number 14.5 could be shown
thus: 14 in the 12 bit binary for the
mantissa is 000000001110 For the frac-
tional part, the .5 in 20 bit binary

is 10000000000000000000. And so, the
complete number would encode as
00000000111010000000000000000000 in
binary format! Which, if displayed as an
integer (which it is), shows up as
15204352!

Reading fixed-point binary fractions is
no more difficult than reading binary
integers. Simply extend the ‘powers of
two’ to other side of the decimal point,
as shown Box 1, and you’re there!

Calculations can then be performed
using integer calculations, removing the
need for an FPU. You will have noticed
that the .5 component is stored as 219 –
half of the number 220 – so that 0.5+0.5
will overflow into the 12 integral bits
automatically and create the number 1.0.

We have not explicitly given ourselves
a sign bit here. We do not need to, since
we shall use the integral component as a
2’s complement binary number (similar
to normal integers) as this is more nat-
ural for the CPU to handle, saving yet
more of our valuable processor time. The
range of values for our 12.20 split system

Bit: 31 30-23 22-0
Description: Sign bit Exponent Mantissa

s eeeeeeee mmmmmmmmmmmmmmmmmmmmmmm

Table 1:IEEE 754 format

The 12.20 split is arbitrary since all fixed-
point operations work naturally with
integral operations.You can decide where
the split should occur yourself, by studying
the problem domain, and considering your
hardware.

When looking at your problem, determine
within which range the numbers will fall. If
you are doing signal processing with sine
waves, then most values will fall between -1
and +1. So, assuming we’ll sum no more
than 16 of these sine waves together, a
range of +/- 16 would not be unreasonable,
so we can adopt a 6.26 approach.This actu-
ally gives a higher level of accuracy than
general purpose floating-point work!

As for the question of hardware, I’m using a
32 bit (i86) machine as a common, easy-to-
understand system, so it makes sense to
utilize the full 32 bits to represent our fixed-
point numbers. However, a much smaller
embedded system might only have 16 bits,
so we would have to tailor our code to that.
Since fixed point is usually only used for
improving speed (and sometimes memory
usage), it may be tied to an architecture
more closely than other software, and so it is
not unreasonable to make machine-specific
decisions. As always, these should be clearly
documented and labelled accordingly.

Box 2: Banana Splits

1 1 1 1 1 1 1
. . . 2 6 3 1 - - - -- -- -- . . .

8 4 2 6 8 4 2 1 . 2 4 8 16 32 64

. . . 0 0 0 0 1 1 1 0 . 1 0 0 0 0 0 . . .

Box 1: Showing 14.5 in binary

• Mathematical constants (such a pi
and e)

• Mathematical functions (like sine and
cosine)

• Miscellaneous helper functions (like
rounding)

This may appear like a very large body of
work. However, since we will only be
converting small parts of our applica-
tion, we only need to write (or integrate
from another source) a small portion of
these components. Even operations like
division that we take for granted in real
life, may be completely unnecessary to
us!

Our primary header file should contain
all other implementation details for our

code. It would, for example, be a good
idea to avoid the magic numbers of 12
and 20 when describing the number of
bits used in our notation since they
might change later. We should also spec-
ify the data type for our numbers also, to
make sure we have enough bits for both
fractional and integral parts.

typedef int FIXP;
/* This must be 32 bits */

#define FIX_FRACBITS 20
#define FIX_INTBITS 12

We have adopted the style of prefixing
our macros with ‘FIX_’. We have also
chosen to label each component with
explicit numbers (12 & 20), although in
practice the size of the integral compo-
nent can be deduced thus:

#define FIX_INTBITS ((sizeof(U
FIXP)*8)-FIX_FRACBITS)

Either method is acceptable. The com-
piler will optimize this macro during the
build, so (on the very few occasions it is
used) it will not cause any slow down.
We are also considering the sign bit to be
part of FIX_INTBITS.

One of biggest practical considerations
in software (of all types) is that of test-

lies between -2048 and +2047 (-211 to
211-1).

Fixed-point mode may appear rather
limiting for general applications – and it
is! But because we are developing a solu-
tion for a specific problem, we accept the
limitations of the system, and utilize the
benefits of speed and accuracy that it
gives us.

Hold Me Now
Fixed-point numbers are stored as a sin-
gle integral type, usually an int or a long.
A greater range can be achieved by using
the ‘long long’ data type, or two vari-
ables – this is at the expense of extra
processing in order to perform the carry
from one variable to the other. Since our
purpose in this case is to reduce the pro-
cessing required, this method buys us
very little benefit.

Get This Party Started
Whether you are writing a brand new
fixed-point routine, or retro-fitting the
code to an existing application, you need
a solid base to work from. This base will
invariably be a fixed.h header file, con-
taining all the necessary macros and
function prototypes for your code. A sup-
plementary fixed.c should exist too,
providing your function implementa-
tions. Although the final code build will
most probably use macros exclusively
(for speed purposes), a C source file
makes the development process (includ-
ing debugging) much easier. It can also
include functions to create (and destroy)
temporary workspaces that the fixed-
point library may need during its life. We
will see examples of these later.

There are a number of different com-
ponents to a library of this kind. For
example:
• Conversion routines, between fixed

and floating-point in both directions
• Basic operators (addition, subtraction,

multiplication and division)

67www.linux-magazine.com January 2004

PROGRAMMINGFloating Point Processing

Throughout this article, examples are in ‘C’
and given as functions for clarity. Java pro-
grammers may care to read similar code at
[3]. For a complete, albeit minimal, real-
world example, the fixed-point Ogg Vorbis
decoder (that was the inspiration for this
article) can be found at [4]. My thanks to
Richard Cohen for sourcing it!

Java and the real world

C++ programmers have a language feature
known as operator overloading.This allows
you to change the way the basic operators
(like addition, subtraction and so forth)
work, when applied to classes. It would
therefore be possible to create a class called
‘CFixedPoint’which removed the need for
macros and made the fixed-point elements
of the code transparent, giving greater read-
ability to the algorithm.

If your language supports such functionality
you should always play to its strengths, and
consider such an implementation.

Box 3: C++

01 FIXP fixFloatToFixed(float fValue)
02 {
03 FIXP Unity, Result;
04
05 if ((int)fValue >= (1<<(FIX_INTBITS-1))) /* -1 because of

sign bit */
06 fprintf(stderr, "FIXP: Integral overflow of %f\n", fValue);
07
08 if ((int)fValue < -(1<<(FIX_INTBITS-1))) /* -1 because of

sign bit */
09 fprintf(stderr, "FIXP: Negative integral overflow of %f\n",

fValue);
10
11 if (fValue < 1.0f/(1<<FIX_FRACBITS) && fValue > -

1.0f/(1<<FIX_FRACBITS) && fValue != 0)
12 fprintf(stderr, "FIXP: Fractional underflow of %f\n", fValue);
13
14 Unity = 1<<FIX_FRACBITS;
15 Result = (FIXP) (Unity * fValue);
16
17 return Result;
18 }

Listing 1: Three checks

68 January 2004 www.linux-magazine.com

Floating Point ProcessingPROGRAMMING

ing. How will we test this? Can we check
for errors easily? And so on.

In fixed-point work, choosing the bias
between integral and fractional bits can
be a little tricky, since it is possible for
the numbers to go out of our set range
easily, and for errors to be accumulated
without any warning. Since the effort of
checking the value of each number at
every step of the process, to ensure that
this does not happen, would eradicate
any speed gain we might otherwise have
made, it is a very good idea to use a
macro that can represent the algorithm
in situ, or to call a separate function.

This can be done on GCC by compiling
with a -DDEBUG flag, and then switch-
ing between the two variations of code
with:

#ifdef DEBUG
#define FLOAT_TO_FIXED(__f) U

fixFloatToFixed(_f)
#else
#define FLOAT_TO_FIXED(__f) U

(FIXP)((__f)*(1<<FIX_FRACBITS))
#endif

The ‘fixFloatToFixed’ function can per-
form additional work like checking the
range of both components, outputting
errors, or even hold statistics for the
most number of integral or fractional bits
used; something that would be unwield-
ing in an macro.

With these basic ideas, we can start to
build our arsenal.

One to Another
Naturally we will want at least two func-
tions into this category – float to fixed,
and fixed to float. We can however, add
others, like ‘two ints’ to fixed. However,
we should follow the ideals of the lazy
programmer, and only implement what
we need to do the job.

We need to make three checks for con-
verting numbers into fixed point. This is,

1. Make sure they’re not too big (e.g.
greater than 2047)

2. Make sure they’re not too small (e.g.
less than -2048)

3. Make sure the fractional part can be
represented using the bits we’ve got
available

The code in Listing 1 demonstrates all
three.

When converting back into floating
point, as in Listing 2, we will not be
checking the range or precision. It is pos-
sible (but quite tricky) to do so, and
doesn’t buy us anything important.

The macro-ized version of this last
function can be written without all the
(explicit) castings like this:

#define FIXED_TO_FLOAT(__i) (U

((__i)>>FIXP_FRACBITS) + U

(float)(((__i)&((1<<FIXP_FRACU
BITS)-1))/(1<<FIXP_FRACBITS))

Since both the integral and fractional
component of the number are combined
into one variable, it is inevitable that
there will some bit-wise logic to accom-
pany it. The logic itself is not
problematic – there’s just a lot of it,
which when compressed into macros
makes it slightly more difficult to follow.
However, it all boils down to a couple of
variations on the same basic theme of bit
shifts and masks (see Box 4: Bit shifts).

We can then test these conversion
functions with a few simple lines of C,
such as:

FIXP fixed;
float not_fixed;
fixed = fixFloatToFixed(14.5f);
printf("14.5 in decimal = U

%d?\n", fixed);
not_fixed = fixFixedToFloatU
(fixed);

printf("Does 14.5 = %f?\n", U

not_fixed);

Bend me, Shape Me
All of the code so far makes the assump-
tion that every number in our fixed-point
system will be in the same 12.20 format.
This can be true. However, some soft-
ware may require two (or more) different
formats within the same program. It is
impractical to supply two headers with
different names, just to support the extra
precision in specific, critical, areas.
Instead, work with one format as your
default, and provide general-purpose
macros which can be used by your
library, and the main user program.

#define FLOAT_TO_FIXED_GENU
(__f, __fracbits) (FIXP)((__f)U
*(1<<(__fracbits)))
#define FLOAT_TO_FIXED(__f) U

FLOAT_TO_FIXED_GEN(__f, U

FIX_FRACBITS)

Now we’ve seen how to create, handle,
and output fixed-point numbers. Next
month we’ll look at how to handle
them in the more complex area of
mathematics. ■

[1] Standard for Binary Floating-Point Arith-
metic: http://grouper.ieee.org/groups/754

[2] IEEE Floating Point Standard:
http://www.tutorgig.com/encyclopedia/
getdefn.jsp?query=IEEE_754

[3] Java versions: http://www.ai.mit.edu/
people/hqm/imode/fplib/FP.java

[4] Ogg Vorbis decoder:
http://lorien.handhelds.org/ftp.arm.linux.
org.uk/people/nico/vorbis

INFO

01 float fixFixedToFloat(FIXP
iValue)

02 {
03 float Result;
04 float fIntegral, fFraction;
05
06 fIntegral = (float)

(iValue>>FIX_FRACBITS);
07
08 fFraction = (float)

(iValue & ((1<<FIX_FRACBITS)-
1)); /* isolate fraction */

09 fFraction /= (float)
(1<<FIX_FRACBITS);

10
11 Result = fIntegral +

fFraction;
12
13 return Result;
14 }

Listing 2: Back to floating

The most common shifting operation you’ll
come across is of the ‘1<<n’variety (where, in
our examples, n=20).This is used in two
main places.The first is to represent the
value of 1.0 in your fixed-point notation,
which can then be used with a single multi-
plication for float->fixed conversions.

Secondly, when used in the expression
(1<<n)-1 you get a result where every bit in
the fractional part of the number is set to 1.
This makes it an excellent bit mask to iso-
late the fraction, as seen in the fixRound
function.

Box 4: Bit shifts

