
Using macros in our code might appear
unnecessary. However, by doing so, we
can replace them with function calls
later on that will check for overflow,
report usage, and assist with debugging.

Even multiplication has only one
caveat, and that is for big numbers. It is
possible (and not too difficult) to over-
flow the integral part of a fixed-point
number during the calculation – even
though the final result might fit neatly
into 32 bits. So, to prevent this, we must
temporarily typecast our (32 bit) type
into something larger to maintain the
precision. Then, once we have the result,
we can convert it back to FIXP, losing
only the precision of the least significant
fractional part.

#define MTH_MUL(__a, __b) U

(FIXP)(((long long)(__a) * U

(__b)) >> FIX_FRACBITS)

To ease code maintenance, the ‘long
long’ type should be afforded its own
type, say FIXP_BIG. In this way, an 8.8
fixed-point system (using short int’s) can
use a simple ‘long’ for FIXP_BIG, which

is a more manageable (and usually
faster) type.

Lay All Your Love on Me
You may notice I use macro names pre-
fixed with MTH_ instead of the usual
FIX_ here. This layer of abstraction will
permit us to re-compile the application
for floating-point operation at a later
stage by simple changing the macro to:

#define MTH_MUL(__a, __b) U

((__a) * (__b))

We can switch between fixed and float-
ing-point in the same manner as we turn
the debug information on and off. That
is, compile with a -DFIXED_POINT argu-
ment to gcc, and use code such as:

#ifdef FIXED_POINT
#define MTH_MUL(__a, __b) U

(FIXP)(((FIXP_BIG)(__a) * U

(__b)) >> FIX_FRACBITS)
#else
#define MTH_MUL(__a, __b) U

((__a) * (__b))
#endif

The reason we were originally using
floating-point numbers within our
programs, was for its mathemati-

cally qualities. Now, without the
standard maths library to support us, we
must resort to coding the necessary por-
tions of the code for ourselves. Or at
least we should Google for the appropri-
ate algorithms and copy them into our
code!

Add N to X
Fortunately, this is not as daunting a
prospect as it sounds, since a lot of it is
very straight forward, and a very well
understood problem in computer sci-
ence. Let us first consider the basic math
functions: addition, subtraction, multi-
plication and division. Since fixed-point
numbers are stored as integers, a fixed-
point operation works like any other
integral operation, and so requires no
new code.

#define MTH_ADD(__a, __b) U

((__a) + (__b))
#define MTH_SUB(__a, __b) U

((__a) - (__b))

In this article, Steven Goodwin

follows on from the last [1] to look at

fixed-point processing and how it

can be used to improve performance

in PDA-based applications, how it

differs from floating-point, along

with the issues involved in porting

software from one to the other and

how to overcome them.

BY STEVEN GOODWIN

Floating Point Processing

Calculate Long Hand

68 February 2004 www.linux-magazine.com

Floating Point Processing – Part 2PROGRAMMING

This will keep the code base identical for
both versions, requiring minimal chan-
ges – and therefore maintenance – over
time. This is especially useful later on
in the development cycle when new
features are added and something goes
wrong. We can switch back to our float-
ing-point implementation to determine
whether it is our algorithm, or fixed
point code that is wrong.

Love Spreads
Multiplication isn’t the only operation
that requires our FIXP_BIG type. Divi-
sion does too. Both of these operations
work by the same principles as fixed
point itself. That is, a fixed-point number
acts like a floating point number that has
been pre-multiplied by a constant factor,
say 100000. All numbers are then 100000
times bigger than they should be –
including fractions; 14.5 becomes
1450000, for example. Now if you
divided this number by 100000 you’d get
the answer 14 – the fractional part (0.5)
would get lost because it’s an integer cal-
culation.

So to preserve the fractional compo-
nent (the 0.5 which was represented
with a value less than 100000) we make
this number 100000 bigger _again_ (to
145000000000!), which will maintain the
fractional component after a division.
Naturally, multiplying these larger num-
bers requires a larger type, and therefore
we need a FIXP_BIG type. If we were
using a system where such a type was
unavailable, then specific multiplication
and division algorithms would have to
be written. We shall not cover them here
as such cases are rare, and the methods
are easy to deduce.

FIXP fixDiv(FIXP num, U

FIXP divisor)
{
FIXP_BIG tmp = (FIXP_BIG)num;

tmp <<= FIX_INTBITS+U
FIX_FRACBITS;
tmp /= divisor;
tmp >>= FIX_INTBITS;
return (FIXP)tmp;
}

Comparisons like greater than and less
than will work directly with the > and
< symbols. Including negative numbers!

And since the numbers already exist in
fixed-point form at this time, there is
no need to wrapper them into macros
because any overflow would have al-
ready happened, and been trapped.

Constant Craving
Depending on your application, you may
need to make use of mathematical con-
stants like Pi and e. Naturally, the maths
library will not contain them in your spe-
cific fixed-point format, so you will have
to create them yourself.

pi = FLOAT_TO_FIXEDU
(3.14159265358979f);

Or we could use the definitions of M_PI
and M_E provided for us in
/usr/include/math.h, as they contain
more precision.

pi = FLOAT_TO_FIXED(M_PI);

This is a good example where a ‘fixIni-
tialiseLibrary’ function comes in useful.
When the program starts, this initialisa-
tion routine can prepare a set of
constants, such as pi and e, which the
code can then reference directly, without
any additional processor overhead. See
Listing 1.

Again, we’ve used the MTH_ naming
convention to allow a floating point ver-
sion of the code to be built with minimal
effort. We create a special constant for
2pi (instead of using g_MthConstant_
PI*2) because by doing so we can regain
an extra decimal place of precision.

Some fixed-point library code will
define values of pi directly into the
source without an initialize function.
This is fine, however, such code is also
fixed (pardon the pun) to a specific for-
mat, such as 16.16.

Where it’s at
The initialize function is also very useful
for our next category – functions. One of
the larger sections of the maths library
are the trigonometry functions like sine,
cosine and tangent. These are normally
calculated with mathematical techniques
like the Taylor series. To do these accu-
rately in fixed point maths can be a lot of
work, and would create a large perfor-
mance bottleneck.

To save the processing, we don’t calcu-
late them! Since the sine function (along
with cosine) is periodic (that is, it
repeats itself at specific intervals) we can
create a simple look-up table for that
interval and reference it without any sig-
nificant overhead. Look up tables can
also be used for arc-sine and arc-cosine
which also fall within a specific range.

fixInitialiseLibrary can create a table
with, say, 1024 elements using the (slow)
floating-point arithmetic functions and
use it throughout the rest of the program.
See Listing 2.

The size of this table will be governed
by you – according to the amount of
memory you wish to devote to it, and the
accuracy required by your application,
but 1024 should suffice for most applica-
tions. This table can be re-used for the
cosine function since they produce the

69www.linux-magazine.com February 2004

PROGRAMMINGFloating Point Processing – Part 2

01 /* fixed.c */
02 FIXP g_MthConstant_PI, g_MthConstant_2PI, g_MthConstant_E;
03
04 void fixInitialiseLibrary(void)
05 {
06 g_MthConstant_PI = FLOAT_TO_FIXED(3.1415926535f);
07 g_MthConstant_2PI = FLOAT_TO_FIXED(6.2831853071f);
08 g_MthConstant_E = FLOAT_TO_FIXED(2.7182818285f);
09 }
10
11 /* fixed.h */
12 #define MTH_PI g_MthConstant_PI
13 #define MTH_2PI g_MthConstant_2PI
14 #define MTH_E g_MthConstant_E
15
16 extern FIXP g_MthConstant_PI, g_MthConstant_2PI, g_MthConstant_E;

Listing 1: Setting constants

use Pythagorus; but if it’s only to find
which of two points are closer then the
root function becomes unnecessary.

• Do they need to be accurate? Not as
silly as it sounds. A lot of file formats
are lossy (JPG, MP3), and there is no
reason why processing can’t be as
well. In the example of a distance
between two points, a good approxi-
mation can be found by adding the
length of the longer side to 1/4 of the
shorter.

• Can the algorithm be re-written as to
avoid the function, or use a different
one with less processing overhead? If
so, do it!

If you find it is necessary to implement a
fixed-point function for (say) the square
root function then you should prefer a
scalable algorithm. Most algorithms in
mathematics work on a method of itera-
tion: the same operation is performed
over and over again until the error is
small enough to be insignificant. By

implementing such an algorithm you can
reduce the number of iterations to suit
your processor budget. In the example
below for the square root, you might like
to experiment with the magic number
‘8’! You’ll be able to see how much extra
precision can be gained from the func-
tion, how much longer it takes to
process, and make a judgement call on
an optimal trade off for your application.
See Listing 3.

Examples of these type of algorithm
can be found at [2]. More complex algo-
rithms for functions such as natural
logarithms can be found in Knuth [3].

Smoking in the Boys Room
Finally, there are a few odd functions
that you’ll find yourself needing. Or
wanting. Their implementation is gener-
ally very easy as they always use well
known algorithms. As we’ve said before,
implement only what you need. See List-
ing 4.

This example demonstrates the most
common ‘gotcha’ in math library pro-
gramming: negative numbers are slightly
different to positive numbers, especially
when it comes to truncation or rounding.
As general purpose library code you’ll
have to cope with these.

In addition, you might also want to
implement a reciprocal function (since
it’s quicker than performing 1/N), and a
custom ‘fixPrint’ routine, which doesn’t

same wave pattern, albeit with a phase
difference of pi/2 radians.

FIXP fixCos(FIXP theta)
{
return fixSin(theta + U

MTH_PI/2);
}

This look-up table can be further
improved by interpolating any values not
present in the table. Or, if you have a
mistrust of tables, it can be calculated
fairly efficiently using an approximation
of a Taylor series or the Remez algo-
rithm.

A good maths textbook will provide
you will methods to compute other func-
tions, such as tangents.

Silent All These Years
One set of functions that can not be rep-
resented with a simple table (like sine)
are non-cyclic functions (like cubics) and
those with input that does not fall within
confined boundaries, like the square
root. A table for these functions would
be impractical, and so the full algorithm
or, at least, an approximation of it must
be created. Before implementing the
algorithm (which costs development and
processor time), consider the following
questions:
• Is it necessary? A function that finds

the distance between two points may

70 February 2004 www.linux-magazine.com

Floating Point Processing – Part 2PROGRAMMING

01 /* fixed.c - compile with -lm
option to link in maths
library for sin() fn */

02 #include "math.h"
03
04 static FIXP g_SineTable[1024];
05
06 void

fixInitialiseLibrary(void)
07 {
08 ...
09
10 for(i=0;i<1024;i++)
11 {
12 fSineValue = sin(M_PI *

2.0f * i / 1024.0f);
13 g_SineTable[i] =

FLOAT_TO_FIXED(fSineValue);
14 }
15

16 }
17
18 FIXP fixSin(FIXP theta)
19 {
20 /* We need to scale theta from

0 to 2pi to 0 to 1023 */
21 /* i.e. offset = theta/2pi *

1024 */
22
23 /* Compute the scale as a

float */
24 float scale = 1024.0f / (2.0f

* M_PI);
25
26 /* Convert to our fixed-point

notation */
27 FIXP fixed_scale =

FLOAT_TO_FIXED(scale);
28
29 /* Find our genuine offset */

30 int offset = MTH_MUL(theta,
fixed_scale);

31
32 /* Convert out fixed-point

number into a 'normal' int */
33 offset >>= FIX_FRACBITS;
34
35 /* Sine is a cyclic function,

so make sure an offset of 1024
36 maps to 0, 1025 map to 1,

and so on.
37 (A table of 1024 elements

was chosen to make masking
easy) */

38 offset = offset & 1023;
39
40 /* Give our result back to the

world */
41 return g_SineTable[offset];
42 }

Listing 2: Fixed.c

Some companies, such as Ekkla Research
can provide a fixed-point library that your
code can link to in place of the floating-
point GNU library, reducing your workload
to nothing more than a re-compile. How-
ever, this library (along with a number of
others) costs money, so consider the ‘time vs
money’question carefully before starting
out.

Cost

LPI Anzeige

72 February 2004 www.linux-magazine.com

Floating Point Processing – Part 2PROGRAMMING

have the side effects of lost precision
caused by the float conversion. When
writing and testing your code you will
doubtless discover more.

Fast Car
After porting your code to the new
(super fast!) fixed-point notation, it is
possible you will _still_ need more
speed. In addition to the usual optimiza-
tion techniques we should also look at
those specific to fixed-point.

The first consideration is to re-order
expressions (such as a*b/c) so that
numeric constants are grouped together.
Consider the offset calculation when
doing a lookup to the sine table. If this
were the slowest part of our application,
and the guilty expression was,

n/2pi * 1024

We could re-write this in the form,

n * (1024/2pi)

Then, when the constant value of
1024/2pi has been computed, this con-
stant can be used in place of the
expression and produce a significant
improvement in speed over the original.
This constant can then be placed in fix-
InitialiseLibrary.

This is true of anything requiring divi-
sion. Dividing, whether fixed-point or
floating point, is slow. So, wherever pos-
sible, replace a ‘divide by N’ operation
with a ‘multiply by 1/N’. The value of
1/N should be pre-computed as above to
provide an extra speed up, possibly by
using a special reciprocal function, as we
saw in the previous section.

I would also suggest the consideration
of specific cases. If the speed of the algo-
rithm relies on a ‘division by 2’, and it
now reads ‘multiply by 0.5’, then con-
sider a specific piece of code to manage
the multiply by 0.5. In this case we use
the bit shift trick we saw in the square
root function.

iHalfOfN = N >> 1;

As long as N is an integer then, regard-
less of fixed-point format used (12.20 or
16.16), this operation will halve its value
in virtually no time at all. The same is
true when dividing (or multiplying) by
any multiple of 2 (i.e. 2,4,8,16,32,64…).
Although this trick does not work with
floating point arithmetic it doesn’t mat-
ter – we’re working in fixed-point – so

we need to use solutions that are better
suited to it. Even if they appear a little
off the wall. The implementation of
fixRound above features another such
case.

You can also apply a similar trick with
other constants by borrowing the idea of
pre-computing the constant. A ‘multiply
by 3’ operation can be optimized by
evaluating the fixed-point value of 3
(with FLOAT_TO_FIXED(3) for example)
and then multiplied directly with the
variable.

iThreeTimesBigger = fixed_pointU
_number * to_fixed3;

And finally, there’s always the possibility
of writing some hand-tuned assembler
code. Since the aim of a fixed-point pro-
ject is speed (and often tied to a piece of
hardware), it is acceptable to create a
macro like USE_STRONGARM_ASM, and
surround specialist assembler code with
it.

Finally, a word of warning concerning
the FLOAT_TO_FIXED macro. Some
processors have a large penalty attached
to the conversion between integral and
floating-point numbers, in either direc-
tion. If you are repeating such
conversions in tight loops, then I
strongly recommend moving them out-
side, and calculating then once, as we
did for the maths constants above. If in
doubt, pre-compute.

Only You
We have covered a lot of ground here,
discovering techniques and tricks that
will allow a good port of hi-performance
software to small platforms where the
‘one size fits all’ mentality doesn’t apply.
Sample code from this article can be
found at [4], in the sources directory. ■

01 FIXP fixSqrt(FIXP num)
02 {
03 FIXP Unity = 1<<FIX_FRACBITS;
04 FIXP tmp = num + Unity;
05 int i;
06
07 tmp >>= 1; /* Divide by

two */
08
09 for(i=0;i<8;i++)
10 {
11 tmp = tmp+fixDiv(num,tmp);
12 tmp >>= 1;
13 }
14
15 return tmp;
16 }

Listing 3: Fixed point
Square root function

01 FIXP fixRound(FIXP num)
02 {
03 FIXP round, trunc;
04
05 if (num &

(1<<(FIX_FRACBITS-1)))
06 round =

1<<FIX_FRACBITS;
07 else
08 round = 0;
09
10 if (num > 0)
11 {

12 trunc = num &
~((1<<FIX_FRACBITS)-1);

13 return trunc +
round;

14 }
15 else
16 {
17 trunc = (-num)

& ~((1<<FIX_FRACBITS)-1);
18 return -trunc

+ round;
19 }
20 }

Listing 4: Odd functions

[1] Floating Point Processing – Numbers
everywhere! Linux Magazine, Issue 38 –
January 2004, p65

[2] Example algorithms: http://www.ai.mit.
edu/people/hqm/imode/fplib/
cordic_code.html

[3] Donald Knuth’s,“The Art of Computer
Programming”

[4] Article sample code:http://www.
bluedust.com/pub

INFO

