
permissions, loading the file, updating
the process table and handling the SUID
bit. In return, the shell takes responsibil-
ity for redirection, wildcard parameters,
controlling pipes and much, much more.
For a brief run-down, see Box 1: Some
Shell Features.

Since the shell is replaceable, many
programmers have sought to replace it
with their own version. Like the multi-
tude of Linux distributions, each shell
attempts to fill a particular role. Some
(like ash) are very small, with a minimal
set of features, and intended for rescue
disks. Others, like csh or ksh, provide
very powerful scripting capabilities for
more complex work.

The most popular Linux shell is called
bash, and stands for Bourne Again SHell.
It was originally written by the GNU pro-
ject, and is a free (and updated version)
of the Bourne Shell, written by Stephen
Bourne. It has become the de-facto stan-
dard in Linux due to its comprehensive
feature set, powerful editing options and,
no doubt, its role in the kernel build
process. We hope to fill the multimedia
control niche. So let us start writing
mmshell!

If I had a hammer
mmshell will provide basic multimedia
functionality, such as MP3 playback, vol-
ume control, and CD access, using the
external tools outlined in Table 1: Tools.
With such a restricted set of features we
shall not need complex inline editing, or
a command history buffer. Instead, we
shall adopt a simple menu-style interface
so the user doesn’t need to type any
commands, or remember their specific
command line switches. mmshell will be
demonstrated with a specific multimedia
user called music.

We shall begin by developing a tradi-
tional menu system. Then, we will study
the ways in which normal programs dif-
fer from shell programs, and how to
overcome them, finishing up with the
correct way to install and use our new
shell.

Joyride
Most programmers have, at one time in
their lives, written a menu system.
They’re not big, and they’re not clever.
Literally. A good menu system should be
small and stupid, as to provide the low-
est bar to entrance. Our stand-alone
menu program might appear as in List-
ing 1.

From a programming perspective, this
is very simple. You may need to change
the device switches for the cdcd and
aumix programs, but even they need
very little explanation. I probably don’t
even need to include the compiler argu-
ments. But I will!

gcc mmshell.c -o mmshell

However, since this program is being
used as a shell, there are other consider-
ations.

To the outside observer, Linux is
one process. To everybody else, it
is an orchestrated blend of kernel,

modules and tools. Each one dedicated
to an individual task. No more. No less.
This approach extends to the login pro-
cedure. The moderately friendly login
prompt (requesting a user name and
password) is provided by a different pro-
gram from the moderately friendly
command prompt (that lets you execute
programs). This prompt is called a shell.
And because it is just another program,
we can change it, add to it, or replace it
completely with our own. Which is what
we’re going to do!

Windmills of Your Mind
The shell is a command interpreter that
allows you (as the user) to enter com-
mands that Linux will, in turn, execute.
Conceptually, it is very simple. You type
a command. The shell executes it. The
underlying operating system takes care
of the complexities such as checking file

This month Steven Goodwin will explain how to write a shell, and overcome

the obstacles involved. After all, it’s shell programming without a shell!

BY STEVEN GOODWIN

Writing a Shell

Shell Shocked

66 March 2004 www.linux-magazine.com

Writing a ShellPROGRAMMING

The maintenance of environment variables
like PS1 and PATH.The latter being an
ordered list of directories, which the shell
searches to find programs.
Internal commands. Some commands, like
cd, export and history, are implemented by
the shell code itself.This improves speed
since there is no disk access.
Wildcard expansion.To convert rm *.jpg into
rm file1.jpg file2.jpg file3.jpg, for example.
Inline editing.This includes tab completion,
and key shortcuts (like Ctrl+A or Ctrl+E) to
jump to the beginning, or end, of the current
line, respectively.
Redirection and pipes. Any of the three basic
streams, input, output and error, can be redi-
rected from, or to, files and through pipes.

Box 1: Some Shell Features

Tool Functionality
mplayer An impressive audio and video playback

tool which supports multiple codecs,
including several Windows ones. If codec
support isn’t important, mpg123 may be
more suitable, as mplayer can cause output
problems requiring a terminal reset.

cdcd Command line-driven CD player.Very use-
ful. Also supports cddb and CD index. If no
configuration file (.cdcdrc) is found in the
users home directory, the program enters
interactive mode to retrieve these settings

aumix Lightweight mixer with basic functionality.

Table 1: Tools

Esther Keller,visipix.com

Orinoco Flow
Let us first consider the basic structure,
as this is very similar regardless of
whether it is run as a shell or stand-
alone program. After all, the shell is just
a program, so we’d expect nothing less.
The program starts with our main func-
tion as normal, including the exe-
cutable’s file name as argv[0] (but pre-
fixed with a minus sign, when run as a
shell), and ends (logging the user out in
the process) when the main function
completes. In order for the bash shell to
reach this point we have to type the
internal command ‘exit’, which does the
equivalent of our ‘Quit’ menu option.

Our only extra consideration here is to
trap the SIGINT signal. This occurs when
the user hits Control+C. When running
as a normal program, our menu would
just close down and we’d have to start it
again. But since this is now a shell, it
would also log us out. So, before that
happens we must close any open files
and stop any music playing. The reason
for closing files becomes clear when
using lock files, as mentioned in Box 2:
Aces High. The trap must be set up with
a suitable callback function, like so:

01 /* Added to main function */
02 signal(SIGINT, CloseHandler);
03
04 /* The parameter allows thisU

handler to be re-used to U

handle different signals */
05 void CloseHandler(int Signal)
06 {
07 puts("Exiting...");
08 /* Stop all music here */
09 exit(0);
10 }

Instead of handling the Control+C
signal, we could ignore it completely.
This effectively disables it, for which we
use:

signal(SIGINT, SIG_IGN); /* ideU
ntical to sigignore(SIGINT); */

It is very likely that you’ll want to catch
other signals, too. If we were writing a
mathematical shell, for example, the
floating-point exception (SIGFPE) would
need to be handled. A complete list of
signals can be found in /usr/include/
bits/signum.h, although not all of these

can be caught (for example, SIGKILL and
SIGSTOP).

All Woman
A much bigger implication of shell pro-
gramming concerns the system function,
which, believe it or not, loads its own
shell to execute the command given! The
shell in question is sh, and usually a
symlink to bash. While this is not neces-
sarily an issue in itself (save the extra
time to load another shell), it can
become problematic if you’re writing a
shell for a confined environment, as you
will also need a copy of bash on the disk.

Instead of system, we need to use a
combination of vfork and execvp. The
first of these functions splits the current
program into two identical processes.
The first half of the fork (called the par-
ent) continues to run as the normal

shell, while the second half (called the
child) executes our external program
using the second function, execvp. A fork
is needed because execvp replaces the
existing process, making it impossible to
continue running our shell. Splitting our
existing process into two, means one
half can live when the other half
becomes expendable. See Listing 2.

This also gives us the bonus feature of
knowing the process ID of the spawned
program. We can then use this ID to kill
the process (and thus silence the music),
should the user hit Control+C.

kill(process_id, SIGKILL);

execvp is one of the many exec*() func-
tion variations that exist. All are
documented in man exec, which is a rec-
ommended read.

67www.linux-magazine.com March 2004

PROGRAMMINGWriting a Shell

01 #include <stdio.h>
02 #include <stdlib.h>
03
04 void PrintMenu(void)
05 {
06 puts("Menu Options\n");
07 puts("1. Play CD");
08 puts("2. Stop CD");
09 puts("3. Play MP3s");
10 puts("4. Mute");
11 puts("5. Unmute");
12 puts("9. Quit");
13 }
14
15 int GetUserOption(void)
16 {
17 char opt[16];
18
19 printf("Option: ");
20 fgets(opt, sizeof(opt), stdin);
21 opt[sizeof(opt)-1] = '\0';
22 return atoi(opt);
23 }
24
25 void ProcessMenu(int iOption)
26 {
27 switch(iOption)
28 {
29 case 1:
30 system("cdcd -d /dev/cdrom

play");
31 break;
32 case 2:
33 system("cdcd -d /dev/cdrom

stop");
34 break;
35 case 3:
36 system("mplayer mp3s/*.mp3

&>/dev/null");
37 break;
38 case 4:
39 system("aumix -d /dev/mixer

-v0");
40 break;
41 case 5:
42 system("aumix -d /dev/mixer

-v99");
43 break;
44 }
45 }
46
47 int main(int argc, char

**argv)
48 {
49 int iOpt;
50
51 puts("Multimedia Shell -

v0.0\n");
52 do
53 {
54 PrintMenu();
55 iOpt = GetUserOption();
56 ProcessMenu(iOpt);
57 }
58 while(iOpt != 9);
59
60 return 0;
61 }

Listing 1: Stand-alone menu

If we tried, there would simply be an
error saying, ‘File *.mp3’ not found.
Solving this can either be done correctly
(by enumerating each file in the direc-
tory, using the opendir-readdir-closedir
trio), or resorting to the system com-
mand. Space prohibits the full solution to
be listed here, unfortunately, but the
source is available on the Linux Maga-
zine web site at http://www.linux-
magazine.com/issue/40/mmshell2.c

Another shell feature that is sorely
missed is the environment. Every vari-
able we’ve come to depend on when
programming within a shell, is suddenly
absent when programming without one.
Naturally enough, the libc system
designers had a solution to this. In fact,
they had two.

The first solution involves changing
our execvp function to execle. This func-
tion takes the usual program arguments,
albeit in a different format, and postfixes
them with a NULL-terminated array of
environment variables.

execle("/usr/bin/cdcd", "cdcd",U
"play", NULL, ppEnviroVars); U

/* Note: full path required */

The second solution relies on a global
variable! It is called environ, and has the
same format as ppEnviroVars above. It is
used on all the other, non-execle, forms
of the exec*() function.

The only other omission we shall men-
tion here is the search path. We’ve
already seen how execvp will check the

two most common directories for exe-
cutables. execplp does the same.
However, none of the other variations
do. This is not normally an issue how-
ever, because it is very sensible to
include complete paths for any exe-
cutable we spawn. This is not an
ecumenical matter, but a security one.

Captain Swing
Depending on your viewpoint, security
is either a fantastic challenge and play-
ground of endless possibilities. Or it is
the biggest administration hassle of your
day. Whatever your opinion, however, it
is certainly the most necessary. Even
programmers are not immune from hav-
ing to consider security. After all, it is the
programmers that put the security bugs
in the software in the first place! But
what constitutes a security bug?

A brief glance at any of the security
advisories (such as BugTraq) or Linux
Magazine’s own Insecurity News, will
highlight a number of software issues.
By far the most common bug is one that
fits the template:

Version X of program Y has a buffer
overrun exploit, enabling rogue input to
execute arbitrary commands as the cur-
rent user.

While this is obviously a very bad
state of affairs for servers that run as
root, or have access to the wheel group,
it might appear unimportant to us. After
all, it is just a simple shell. If we’re using
it, we must be authorized to use this
machine anyway, where we could do

We can call our custom spawn func-
tion like so:

char *args[] = { "cdcd", "play"U
, NULL };

ForkAndExec("cdcd", args);

Here we must give the program name in
two places: the executable filename, and
the first argument. This is a convention,
whereby argument zero is always the
program name. It doesn’t have to be the
programs real name (since some might
be symlinks), but there is no harm in
doing so. Being C programmers, we’re
used to the program name being passed
to us as argv[0].

The filename doesn’t need a full path,
since the evecvp version will search the
/bin and /usr/bin directories automati-
cally, if a path is not included.

Without Me
When we removed the system call from
our shell, we lost more than a wasted call
to bash. We lost a friend! Everything that
the shell provides (refresh your memory
with Box 1: Some Shell Features, if neces-
sary) has been lost. For instance, the
redirection (that hides mplayers exces-
sive output), the environment variables
(especially PATH), and the wildcard
expansion. The latter omission means we
can no longer use *.mp3 for our playlist.

68 March 2004 www.linux-magazine.com

Writing a ShellPROGRAMMING

Although the file permissions will prevent
non-authorized users from accessing the CD
and soundcard, we might want to limit use
of the mmshell to a single instance.This
would prevent two different users issuing
conflicting requests, and could be imple-
mented by the shell refusing to run for any
user, other than music.
We could also create a simple lock file in the
/home/music directory.This file would only
need to exist to indicate that a user was
logged in, and prevent mmshell accepting
new commands or allowing additional
logins from that user.The lock file would be
removed when the user logged out.
It is here that the necessity for handling sig-
nals (like SIGINT) becomes apparent. If, for
example, the user hit Control+C while in
mmshell and the signal wasn’t handled, the
lock file would never be removed, and no
one could log in as music again, until root
deleted it manually.

Box 2: Aces High

01 void ForkAndExec(const char
*pName, const char **ppArgs)

02 {
03 pid_t process_id;
04
05 /* We use vfork instead of

fork because it's quicker */
06 /* when you only intend the

child to call execvp */
07 process_id = vfork();
08
09 switch(process_id)
10 {
11 case -1:
12 printf("ERROR! Could not

spawn %s...", pName);
13 return;

14
15 case 0:
16 /* The child is born to

die, after been replaced */
17 /* by another program. */
18 execvp(pName, ppArgs);
19 exit(0);
20
21 default:
22 /* The parent process */
23 printf("Spawned PID %d\n",

process_id);
24 }
25
26 return process_id;
27 }

Listing 2: Splitting in two

worse damage with bash and the rm
command! Right? Wrong! Every security
problem is a problem. If we’re using
mmshell in a restricted environment
(perhaps to operate a kiosk machine),
users won’t have the authority to change
the shell. A security hole might allow
this, giving crackers a foothold allowing
them to climb higher.

Security inside the shell can be
achieved by solid programming tech-
niques: compiling with every pedantic
warning option your compiler supports,
using tools such as Splint [1] and
Flawfinder [2], and exhaustive testing.
You need to check your bounds (easier if
you avoid functions like sprintf and str-
cpy), validate any user input (checking
for, and removing, escape sequences)
and avoiding any software you don’t
trust. The latter point is difficult to
ensure once you execute another pro-
gram, since control has now left the
shell. Creating secure kiosk systems
becomes difficult because a lot of exter-
nal software (like email clients and
editors) allow you to ‘shell out’ to bash.

Once you have found, or written, a
secure external program, you can safely
execute it. One simple step to maintain
this level of security is to execute it using
its full path. This gives no room for mis-
interpreting the location of ‘mplayer’, for
example, and executing a rogue, Trojan,
program by mistake or intent. Naturally,
the executable in question should also be
in a secure directory that can only be
written to by root. To confirm the path of
an executable in use, try typing:

$ which mplayer
/usr/local/bin/mplayer

Secure programming is a vastly complex
topic. And many good words have been
written about it. Some them are avail-
able at [3] and [4].

Sleeping in my car
Having completed our development, we
must now test it. To do this, we will cre-
ate a separate user called music, and add
it to the audio group.

adduser --ingroup audio music

By making sure the audio group has the
appropriate permissions to control the

CD player, and access the soundcard, we
will have a fully functional test user.
Since the shell is very restrictive, it is not
wise to use it on our own account, lest
we err and need to log in as root to fix it.

Testing is a two-stage process. First,
we need to log on as the user music with
the bash shell, and use the program as a
normal menu system. This will confirm
we have the right permissions set up,
and our signals are working. Then we
need to configure the music user to load
and run our new shell after login.

Although Linux permits normal (i.e.
non-root) users to change their shell, it
does not permit them to add their own
shells to the system. The only permitted
shells are those explicitly listed in the
/etc/shells file. This is to maintain secu-
rity and stability of the system. Users
trust their shell to be discrete, and not
log every key press. Even if the user had
logged into her computer using a secure
shell (such as ssh), a Trojan horse-like
shell could still monitor those key-
presses once ssh had passed control over
to the user’s default shell. Fortunately,
only root can change the permitted
shells.

Having made a careful audit of the
new shell code, we can copy it into the
/usr/bin directory, and add its name to
the list of acceptable shells. You can do
this as any user, so long as it’s root!

cp mmshell /usr/bin
echo /usr/bin/mmshell >>/etcU
/shells

We then need to tell the login prompt
that we wish to use this shell, instead of
bash. Although this can be done by
changing the /etc/passwd file directly,
this is not recommended. Better instead
to use the chsh program. This works as
any user, although only root can change
the shell of other users.

$ chsh -s /usr/bin/mmshell

This will take effect the next time we log
in. So, type ‘exit’, and log back in. If
everything is working properly (and
there’s no reason why it shouldn’t –
although you may need to amend the
paths of individual programs like aumix
or mplayer) you will see:

mymachine login: music
Password:
Linux tori 2.4.19 #44 SMP U

Sun Dec 28 19:07:54 GMT U

2003 i686 unknown
Last login: Sun Jan 4 U

14:32:26 2004 from mymachine

Multimedia Shell - v0.1

Menu Options

1. Play CD
2. Stop CD
3. Play MP3s
4. Mute
5. Unmute
9. Quit

And there you have it! With this basic
functionality in place, you could easily
upgrade mmshell to include new, or dif-
ferent features according to your desires.
Or you could write a completely new
shell. Perhaps a kiosk system for email
and web browsing, or an interactive tele-
text system using alevt and a TV card.
My original idea (and the basis for this
article) was sleepshell that enabled me to
choose which type of relaxation music to
play at bedtime: forest, streams or ambi-
ent effects. You may have better ideas. In
fact. I’d count on it! ■

69www.linux-magazine.com March 2004

PROGRAMMINGWriting a Shell

[1] Splint:
http://www.splint.org/download.html

[2] Flawfinder:
http://www.dwheeler.com/flawfinder/

[3] Secure Programming: http://www.
dwheeler.com/secure-programs/
Secure-Programs-HOWTO/index.html

[4] Quality coding:
http://www.linux-magazine.com/issue/
27/CodeTesting.pdf

[5] Perl shell:
http://sourceforge.net/projects/psh/

INFO

Of course, not everyone is a C programmer. It
is perfectly feasible to write your own shell
in Python, Perl or Ruby as the programming
rules, and method of installation, are exactly
the same. In reality, of course, shells are
rarely written in any language other than C.
But that doesn’t normally stop anybody
from doing so, as can be seen at [5].

She Sells C-Shells,
on the C-Shore

