
with which to communicate, we no
longer have to worry about those specific
details. Instead, we can devote our time
to more important tasks, like creating
efficient inner joins and select queries!

This abstraction doesn’t extend to the
way in which we program the database,
as each has its own separate API. In PHP,
you can initiate dialog with a MySQL
database called fredbloggs using,

$db = mysql_connect("localhostU
", "myuser", "mypass");
mysql_select_db("fredbloggs");

while PostgreSQL requires,

$db = pg_connect("host=localU
host dbname=fredbloggs user=U
myuser password=mypass");

Although most of these parameters are
optional, moving code between data-
bases is still painful, as every connect,
select and error handler needs to be
re-written to accom-
modate the new
database. Every time
they’re used. Not just
a change to the func-
tion name, but also
the structure and
format of the argu-
ments. As well as the
error codes. The
answer is to abstract
the specific data-
base_connect
function away from a
specific database,
and use a common
API call. This needs

to
be
done for
every data-
base-specific
function. Unfortu-
nately, this is a lot of work!

The good news is that someone else
has done it for us! There are a couple of
database APIs for PHP. The focus of this
article is on PEAR::DB, one of the many
good PEAR modules (see box – About
PEAR) available from [1]. It is under
active development, and includes some
of the core PHP team. The current ver-
sion is 1.6.0, and considered stable. For
those wanting to compare alternatives,
there is also ADOdb [2], Metabase [3]
and PHPlib [4].

The adoption of MySQL has been a
blessing and a curse for the PHP devel-
oper. On the positive side, it integrates
well with the default install and means
that anyone can develop good database-
driven web sites, with the minimum of

By using a common API, our code
can work with different databases
without the trials of having to

modify the source. This month, Steven
Goodwin gets a bigger audience by using
PEAR::DB.

Hey Matthew
PEAR::DB is a PHP module that provides
control over a database, but without
requiring any specific database. This
means that the same code can be used to
access MySQL and Oracle, for example.
So how does it work? Abstraction! This
is ability to generalize a system, or API,
so that the details are hidden from view.
Most of us use abstractions – often with-
out realizing it. Even ‘C’ programmers,
the supposedly hardened criminals of
the development world, have their life
made easier through abstractions. Every
function, expression and statement
abstracts specific hardware details of the
processor away from the programmer
through the ‘C’ language. This is a low
level abstraction.

Database programming through SQL is
a high level abstraction. The database
(be it MySQL, PostgreSQL or Oracle) can
work in any way it chooses, feature any
algorithm, and use any files it likes. By
choosing a common language (SQL)

Writing code in a high level language, such as PHP, ensures that it has a global

audience. So why then limit that audience by imposing a specific choice of

database? What about platforms that do not support MySQL?

BY STEVEN GOODWIN

Going Pear-Shaped

Global Cover

62 May 2004 www.linux-magazine.com

Pear::DBPROGRAMMING

PEAR stands for the PHP Extension and
Application Repository (although some peo-
ple seem intent on replacing Application
with Add-on) and is a library for PHP code,
similar to CPAN for Perl. Alongside the data-
base (i.e. DB) modules, there is also code for
handling HTML, authentications and
encryption.

About Pear

01 CREATE DATABASE IF NOT EXISTS tv;
02 USE tv;
03 drop table IF EXISTS channels;
04 CREATE TABLE channels (
05 station smallint(2) NOT NULL default '0',
06 channel smallint(2) default NULL,
07 name varchar(10) default NULL,
08 PRIMARY KEY (station)
09) TYPE=MyISAM;
10 INSERT INTO channel VALUES (1,55,'BBC 1');
11 INSERT INTO channel VALUES (2,62,'BBC 2');
12 INSERT INTO channel VALUES (3,59,'ITV');
13 INSERT INTO channel VALUES (4,65,'Channel 4');
14 INSERT INTO channel VALUES (5,37,'Five');

Listing 1: TV database

hassle. Unfortunately, it also blinkers
many developers into believing that
there are no other databases. Or that
they are not well supported. Neither is
true, as can be seen in Table 2, supported
databases. Additional status information
can be found in the file docs/STATUS.

With these considerations in mind,
this article will follow the most common
upgrade path to PEAR::DB, which is
from MySQL, and look at the simple case
of a TV channel database, on a PHP-gen-
erated web page.

Missionary Man
Since the utilization of PEAR::DB is, in
essence, a software upgrade, we need to
begin with an existing application. To
fulfill that role we’ll return to the theme
of last month’s article, and our email to
video gateway [5]. Instead of storing the
channels explicitly in a batch file, we’ll
place the mapping entries (stations,
channels and names) into a database.
This could be used as part of a larger TV
control application, see Listing 1.

To start, take this sqldump and apply
to the database in the usual way, grant-
ing access to the appropriate user
(www-data, for example). This database
can then be accessed through MySQL
with Listing 2.

In this rather simple section of code
(which has had all its error checking
removed for clarity) we have no less
than 5 separate references to MySQL.
Instead of referencing the table with
tv.channels, some people prefer to spec-
ify a default database using,

mysql_select_db("tv");

It works in the same way as the use com-
mand at the MySQL command prompt,
but adds another specific MySQL call.

If we changed the backend database,
every mysql reference would need to be
re-written. With more functions, han-
dling more databases, the amount of
redundant code will grow. Normally, the
only concession to maintenance coding
involves moving the database host, user
name and password into a separate file,
like dbase.inc.
$dbhost = 'localhost';
$dbuser = 'www-data';
$dbpass = '';
$dbname = 'tv';

That is not enough. We need an
abstraction layer, like PEAR::DB. Most
installations will include the PEAR::DB
library by default, usually in /usr/share/
pear. You can confirm that a system-
wide installation is included on your
machine by writing,

<?php
require_once 'DB.php';
?>

If not, you can install it using either the
PEAR Packet Manager (by typing pear
install DB), or a manually with a tarball.
Further details on the PEAR installation
process can be found in the on-line man-
ual, located at [6]. Alternatively, copy
the files into your home directory (say
~/pear/), and amend the PHP include
path. This will be necessary where you
do not have root on the machine, as is
the case with many hosting packages.
For example,

<?php
ini_set('include_path', U

'~/pear/lib'.PATH_SEPARATOR.iniU
_get('include_path'));
?>

You will now have access to a host of
new database functions, all conforming
to PEAR’s naming convention. Where to
start? The obvious place are the basic
house keeping functions, connect and
close. Having previously looked at the
MySQL and PostgreSQL versions, the
PEAR::DB ones require a slight change in
perspective.

Since other databases may require
more (or less) parameters, a simple
replacement function that renames the
parameters will not work. Instead, we
must specify a data source name. Or
DSN. This encompasses all possible
arguments into a single formatted string.
The complete format of which is,

phptype(dbsyntax)://username:U
password@protocol+hostspec/U
databasename

The DSN looks like a URL. It describes
where to connect, how to connect, and
what database and options to use once
we have connected. This line comprises
two parts. The first part describes the
specifics of the database back-end, and
includes the database type (named
phptype, e.g. mysql), and any database-
specific requirements given by dbsyntax.
A list of phptypes is shown in Table 2.
The oft-cited example of a dbsyntax
string is the name of a specific driver
when using an ODBC back-end (e.g.
access, db2, mssql). This is not difficult
to determine, but affects Windows users
more than us, so we do not need to go
any further.

The second part of the DSN contains
everything that is database independent,
such as hostname, port, username and
password. As with the usual mysql_con-
nect function, not all parameters are
obligatory and can be omitted as neces-
sary. For example:

mysql://www-data@localhost/tv

Naturally, our final code will store these
parameters in a common dbase.inc file
for unity, as previously shown. The DSN
need not be specified as a string. It can
also be given as an array (as detailed in
the DSN as an Array box), making it
slightly faster to initialize since there is
no string to parse.

The DSN allows us to specify initial-
ization options using the URL-inspired
?option1=value1&option2=value2
method. There are several options avail-
able, including both practical connection
based features (the use of SSL) and
development helpers (to control the
amount of debugging messages pro-
duced). Since these options can vary
between specific queries, we shall not

63www.linux-magazine.com May 2004

PROGRAMMINGPear::DB

Name Keyword

dBase dbase

FrontBase fbsql

InterBase ibase

Informix ifx

Mini SQL msql

Microsoft SQL Server mssql

MySQL mysql

MySQL >=4.1 mysql4

Oracle 7/8/9 oci8

ODBC odbc

PostgreSQL pgsql

SQLite sqlite

Sybase sybase

Table 2: Supported
databases

ple, then these names will be automati-
cally converted to lowercase by,

$db->setOption('portability', U

DB_PORTABILITY_LOWERCASE);

This removes the surprise that can occur
when an unknown code path gets exe-
cuted and breaks the application. Other
options are given in Table 1.

The default settings for all these
options are aimed at improving per-
formance, but it is up to you to
determine which ones are set for your
application. There are also definitions
for DB_PORTABILITY_ALL and DB_
PORTABILITY_NONE that fulfill their
traditionally useful role of setting all, or
none, of the flags respectively.

Move the Crowd
Not all of the functionality is geared
towards making the database easier to
access. fetchRow, for example, makes it
easier to retrieve the data in a program-

mer-friendly format. PEAR::DB currently
supports three such formats. By default
this will be an array, ordered from zero,
as shown above. The optional parameter
of DB_FETCHMODE_ORDERED has been
omitted in the previous example. This is
useful for handling generic databases, or
displaying tables without the need to
know, or reference, the field names.

In most situations, however, numeric
indices are not descriptive enough, and
so we can request that the results are
given to us in an associated array. This
results in more easily readable code, but
at the expensive of generality.

while ($row = $result->fetchRowU
(DB_FETCHMODE_ASSOC)) {
print $row['station']." - U

".$row['name']." (".$rowU
['channel'].")
";
}

Finally, fetchRow provides a means of
using the object-oriented features of PHP
to return an object for each row of the
results table. Each column is labeled as a
property. Again, this makes the code
easy to read, but it is of limited use for
more general applications.

while ($row = $result->fetchRowU
(DB_FETCHMODE_OBJECT)) {
print $row->station." - U

".$row->name. " (".$row->U
channel.")
";
}

One for the Road
No code is ever complete without error
checking and documentation. Neither
are glamorous, but both are necessary.
The error checking capabilities of
PEAR::DB have been unified (as have
the error codes), and stem from the basic
error handling features of PEAR_Error.
Whenever a PEAR::DB function fails,
most will return an instance of an error
class – from the grandest connect, to the
lowliest getRow. This class not only
holds the error from the PEAR function,
but extra debug information which can
be useful in tracking down problems.

$db =& DB::connect($dsn);
// DB::isError is the same as U

PEAR::isError
if (DB::isError($db))

incorporate them into the DSN. Instead,
we shall create an array detailing the
options, and pass them to the DB::con-
nect function separately.

// Remember these variablesU
may need to be declared global
$dsn = "$dbbackend://$dbuserU
@$dbhost/$dbname";
$options = array('debug' => 2);
$db =& DB::connect($dsn, U

$options);

These options can be changed at any
time, using the following function.

$db->setOption('debug', 0);

Should the connection work (we’ll look
at the error handling capabilities later),
we will have a database object called
$db that is used in all other calls to this
particular database. For instance, closing
the database after use.

$db->disconnect();

We then have to set about adapting our
existing functions to use the new object
and its associated member functions.
This is not difficult, since they have very
similar names to the original MySQL ver-
sions and follow the PEAR naming
convention. So mysql_query becomes
query, for example. This makes our basic
function as in Listing 3.

Glory Box
Because all requests to the database go
through the PEAR::DB driver, the code
within it has the ability to change, mod-
ify, and mess around with your request.
It does this in the name of portability.
You can give it more, or less, reason to
do this with the portability options pro-
vided through the setOption method that
we’ve already seen. This allows you to
set up a number of different options so
you can make informed decisions as to
the trade-offs you want to allow.

These trade-offs usually exist on a per-
formance versus portability playing field,
and depend largely on your specific
application. They can also be used to
coax older code into PEAR::DB. By con-
vention, most table names will be in
lowercase. If an application is trying to
fetch rows using mixed case, for exam-

64 May 2004 www.linux-magazine.com

Pear::DBPROGRAMMING

01 function GetStationsList()
02 {
03 $db =

mysql_connect("localhost",
"www-data", "");

04 $query = "SELECT * FROM
tv.channels";

05 $result =
mysql_query($query);

06 while ($row =
mysql_fetch_array($result,
MYSQL_NUM)) {

07 print "$row[0] - $row[2]
($row[1])
";

08 }
09 mysql_free_result($result);
10 mysql_close($db);
11 }

Listing 2: Accessing MySQL

01 $dsn = array(
02 'phptype' => "mysql",
03 'hostspec' => "localhost",
04 'database' => "tv",
05 'username' => "www-data",
06 'password' => ""
07);
08 $db = DB::connect($dsn);

DSN as an Array

{
print $db->getMessage();
print $db->getDebugInfo();

}

Errors can also be trapped using the
standard PEAR error handler. This is a
user-defined function which will be
called whenever a PEAR module (like
DB) generates an error. This call-back
function can be used in production code
to give a standard HTML page to the
user, while also alerting the administra-
tor to the problem.

These error handlers
are traditionally com-
bined with the
buffered output feature
of PHP, enabling any
partially-built page to
be cleared from the
HTML stream. Since
this is a feature of
PEAR, not PHP, tradi-
tional errors (such as
divide by zero) will not
get caught by this.

01 // Prepare the handler
02 PEAR::setErrorHandlingU

(PEAR_ERROR_CALLBACK, U

'error_function');
03 // Switch on output buffering
04 ob_start();
05 // Do normal stuff
06 PearVersion();
07 // Flush output buffer (not U

necessary, but tidy)
08 ob_end_flush();
09 // Prepare our handler
10 function error_function($err)

11 {
12 ob_end_clean();
13 print "An error (".$err->U

getMessage().") happened!");

PROGRAMMINGPear::DB

01 function PearVersion()
02 {
03 global $dbname, $dbhost,

$dbuser, $dbbackend;
04 $dsn =

"$dbbackend://$dbuser@$dbhost/
$dbname";

05 $db =& DB::connect($dsn);
06 $query = 'SELECT * FROM

channels';
07 $result = $db->query($query);
08 while ($row = $result-

>fetchRow()) {
09 print "$row[0] - $row[2]

($row[1])
";
10 }
11 $result->free();
12 $db->disconnect();
13 }

Listing 3: PEAR naming
convention

Option Description
DB_PORTABILITY_LOWERCASE Convert field and table names to lower case

(on get and fetch)
DB_PORTABILITY_RTRIM Trim output from right
DB_PORTABILITY_DELETE_COUNT Always reports number of rows deleted
DB_PORTABILITY_NUMROWS A hack for Oracle’s numRows
DB_PORTABILITY_ERRORS Map error messages between different data

bases
DB_PORTABILITY_NULL_TO_EMPTY Convert null’s into empty strings (from get

and fetch) because Oracle can’t tell the
difference between them

Table 1:Portability Options

if ($db->providesU
('transactions'))
print "Hooray! It's supported";

The range of features for which we can
test is shown in Table 3.

In each case it is possible that the
database does not natively support the
feature. The key word here is natively,
because there is a distinction between
back-end database and PEAR::DB driver.
For example, if the database does not
support prepare/execute commands, the
driver will support the appearance of
prepare/execute through emulation.

It can be tempting to use provides to
create completely different, hand-tuned,
queries for each database. In most cases,
this is unnecessary and A Bad ThingTM.
The reason (some would say excuse) for
this behavior stems from the extensions
that are prominent within SQL. The typi-
cal example of this problem comes from
limited select queries, which stop pro-
ducing results after the first, say, 10
rows. The current crop of databases can
all perform this task, but does so with
different SQL query strings, as shown in
Table 4. Coding each example explicitly
will create a lot of extra work.

Also, because we cannot cater for
every database (including new, currently
unwritten, ones), our code will become

non-portable very quickly, and suffer
‘code rot’. This problem is easy to solve,
however, as we can employ the same
principle of abstraction. PEAR::DB pro-
vides a method called limitQuery that
hides the precise syntax away from the
end user, and adapts to whatever is com-
patible with the current database back
end. This invariably makes more sense
than writing separate queries for each
database ourselves.

$query = "SELECT name FROM U

channels"; // no reference to U

limits here!
$result = limitQueryU
($query, 2, 1);

This command retrieves 1 row of results
from the query, starting at index 2.
Because we’re counting from 0, this
means the 3rd entry.

If the SQL select query can be
modified to create a suitable string for
the database in question, $db->
provides(‘limit’) will return alter, and
the query will be modified by the
PEAR::DB driver before being passed
on. Otherwise, provides might return
emulate, because the driver is able to
fetch query results on a row-by-row
basis. Or it could return false. You should
always query the database features using
the results from provides, and not your
memory or experience. However, for
comparison, the current set of drivers
provides the functionality as shown in
Table 5.

In some rare cases, it is necessary to
know the precise database being used.
This is because of bugs in the database
itself. They’re a fact of life. But if we
can’t remove them, we have to know
where they are so we can at least avoid
them.

14 exit;
15 }

The Real Slim Shady
PEAR::DB really is as easy as it appears.
The complexity comes instead from SQL
itself. PEAR::DB only manages to shield
some of this away from you. SQL has
been in existence for many years. Within
the usual rules of vendor warfare, special
extensions were added to each specific
variant of SQL making it incompatible
with everyone else’s.

Although ANSI managed to standard-
ize several parts of the language (the
basic versions of select, insert and update
are fairly portable), there are still many
holes. Some big enough to drive a planet
through! Writing standard SQL is a task
in itself, and there are several rules of
thumb to know and adopt. Most hard-
core database programmers know them
instinctively. The rest of us need to refer
to tutorials such as [7].

In some cases we may wish to use dif-
ferent queries, depending on how the
database will react. This requires extra
work, either by us, or PEAR::DB. Unfor-
tunately, once we’ve abstracted the
database out of the equation, we have no
way of knowing if it is capable of doing
what we require of it. PEAR::DB has
acknowledged this problem, and fea-
tures a method called provides.

provides indicates the capabilities of
the current back-end database. It allows
us to switch between two hand-tuned
queries to help improve performance in
special cases. We use the capabilities
(another abstraction!), rather than a spe-
cific database, because things change. A
later version of the database might sup-
port a new feature. Or a new database
might come onto the market. The
PEAR::DB provides method provides (no
pun intended!) a means for us to use
more optimal queries in our database
without having to understand anything
about the new database.

66 May 2004 www.linux-magazine.com

Pear::DBPROGRAMMING

string Functionality

prepare Does the database pre-check the SQL query

pconnect Persistent connections

transactions Does the database support transactions

limit Limited select queries

Table 3:Support for
provides

Database SQL Syntax

DB2 select * from table fetch first 10
rows only

Informix select first 10 * from table

Microsoft SQL Server select top 10 * from table

MySQL select * from table limit 10

Oracle 8i select * from (select * from
table) where rownum <= 10

PostgreSQL select * from table limit 10

Table 4: Limited SQL

Database prepare pconnect transactions limit
FrontBase false true true emulate
InterBase true true true false
Informix false true true emulate
Mini SQL false true false emulate
Microsoft SQL false true true emulate
MySQL false true true alter
Oracle 8i false true true alter
ODBC true true false emulate
PostgreSQL false true true alter
Sybase false true false emulate

Table 5: What provides provides

print $db->phptype;

This yields the same identifiers as shown
in Table 2. Details of specific database
bugs are beyond the scope of this article.

Especially for You
As a special bonus, PEAR::DB doesn’t
only provide abstraction for databases. It
also includes a few extra bells and whis-
tles for handling this data, such as
numRows and numCols.

print "Select query produced U

".$result->numRows(). " rows";
print "Select query produced U

".$result->numCols(). " cols";

The results of these functions are fairly
self-explanatory, and could be deduced
from the select query itself. When the
query is generated automatically, we can
avoid having to manually count the
columns. We could also use these num-
bers to iterate through our results.

There is also a tableInfo method which
can provide information about each col-
umn in our results, such as its name and
type. This is not only very useful in
debugging, but also good for creating
generalized database applications. We
could color different columns according
to type, or highlight the key field. See
Listing 4.

In addition to name and type, you can
also query each column’s length, flags
(which indicates the primary key) and
table name, using the syntax above.

Although much of the API supports
the select query, there is still room for a
little affection to be lavished upon other
queries, such as insert. One such feature
is the affectedRows method. This, as you
might guess, returns the number of rows
that were affected by a query like insert,
delete, or update. There is also support

to generate unique ID’s using the
sequence function, nextID, which is use-
ful for generating unique keys –
something not natively supported by
MySQL. For example:

// Get a new ID.
$id = $db->nextID('sequence'); U

// (the sequence will be U

created if it doesn't exist)

Another useful feature is the statically
declared assertExtension method. This,
being static, doesn’t require a database
object, and will indicate what features
are included with the current installa-
tion. In its most useful incarnation, it
can determine which databases are
installed on the system, and the best
suited can then be selected for use
within the application. See Listing 5.

Despite its name, this is not an asser-
tion in the traditional programming
sense, as no error is explicitly output,
should the condition not be met. It sim-
ply maintains that such an extension
does, or does not, exist.

Finally in this section, we shall briefly
mention the pairing of prepare and exe-
cute. This is a feature that prepares a
query for repeated execution by effec-

tively pre-compiling it into tokens. The
query will generally contain place hold-
ers for other information, so the query
can be executed many times, with differ-
ent data in place of the generalized
markers. See Listing 6.

The executeMultiple method would
evaluate to the SQL queries,

INSERT INTO channels (station, U

name, channel) VALUES (6, U

"Video", 0);
INSERT INTO channels (station, U

name, channel) VALUES (7, U

"PS2", 39);

executeMultiple will stop at the first
error, should it occur. To circumvent this,
you will need to execute each query in
turn with the execute method instead.
For example,

foreach ($data as $row) {
$db->execute($generic, $row);

}

Incidentally, the data array must be
numerically indexed from zero. In most
cases you should see a speed improve-
ment when several entries are inserted
into the database at once. This benefit
assumes that your database supports the
feature natively which, alas, not all do.

Close to the Edit
With PEAR::DB in your armory you can
attack most databases, without having to
worry about missing functionality, or
unsupported features. Using the many
utility functions, and the extensive range
of database methods, a good cross-plat-
form database application can be written
in PHP without worrying about the
minor battles. So you can concentrate on
the war. ■

67www.linux-magazine.com May 2004

PROGRAMMINGPear::DB

[1] PEAR: http://www.pear.php.net
[2] ADOdb: http://php.weblogs.com/adodb
[3] Metabase:

http://freshmeat.net/projects/metabase/
[4] PHPlib: http://phplib.sourceforge.net/
[5] Linux Magazine, issue 41, April 2004, p66
[6] PEAR manual: http://www.pear.php.net/

manual/en/installation.cli.php
[7] Writing Portable SQL Code:

http://php.weblogs.com/portable_sql

INFO

01 $tableinfo = $result-
>tableInfo());

02 for($col=0; $col < $result-
>numCols(); $col++) {

03 print
$tableinfo[$col]['name']." is
a ".$tableinfo[$col]['type'];

04 }

Listing 4: tableInfo
01 if

(DB::assertExtension("oci8"))
02 print "Use Oracle if we have

to...";
03 if

(DB::assertExtension("mysql"))
04 print "Use MySQL because we

understand it better...";

Listing 5: assertExtension

01 $generic = $db-
>prepare("INSERT INTO channels
(station, name, channel)
VALUES (?, ?, ?)");

02 $data = array (
03 array(6, "Video", 0),
04 array(7, "PS2", 39)
05);
06 $res = $db-

>executeMultiple($generic,
$data);

Listing 6: Preparing a
query

