Bilingual Programming

PROGRAMMING Bilingual Programming

Second Ianguage

Linux is international. It was started
by a programmer from Finland who
speaks Swedish. Aided by a Welsh-
speaking lieutenant. Supplemented
with a kernel maintainer from Brazil.
Sowhy is all our software written

in English? This month multi-lingual
development and the gettext

package.BY STEVEN GOODWIN

he English language holds the same
Tpower in today’s society that Latin

did many hundreds of years ago.
It’s not the most expressive language, nor
is it the most popular. It certainly isn’t
the easiest to learn. It is, however, the
most widespread. With the remnants of
the old British Empire still present, and
the continued growth of America, people
are required to use English in order to
compete on the world stage.

Computers and the Internet have
increased this linguistic strangle-hold.
More web pages exist in English than any
other language. More programming lan-
guages use English words like if and
while, regardless of the designer’s nation-
ality. Most software uses prompts and
error messages that are written in English.

However, with Linux taking control of
many different systems across the globe,
it would appear to be xenophobic of us
to continue developing ‘English-only’
software. Adding the ability to change
the language (or locale) of your software
is not a difficult task to achieve, but it
shows a wider commitment to your pro-
ject, and the open source community in
general. Even if you can not translate the
text yourself, you can make it easier for
someone else to do so by following the
guidelines in this article.

Turning Japanese

GNU/Linux uses a technique known as
locales to determine many things: the
appropriate translations for text, the
character set required to represent the
alphabet, and cultural specifics like the
expression of numbers, or the date. Each
area is considered in the box: Locale Cat-
egories, although the focus of this article
will be on text translation.

So let us start with the simplest pro-
gram we know, Hello World. We shall be
coding in C, although the same tech-
niques can be applied regardless of
language. You’ll be able to test the PHP

Writing multi-lingual software in PHP is no
different from using C.The functions even
have the same name! However,when run as
part of a web page, it might be more suit-
able to specify the locale explicitly. Perhaps
coming from an session variable, or cookie
on the users machine.
<{?php
setlocale(LC_ALL,
textdomain("Tm");
echo gettext("Hello World!\n");
>

The effect of setlocale can also be achieve by
using the putenv function.

putenv ("LANG=fr");

"fr_FR");

m June 2004 www.linux-magazine.com

equivalent by using the code in box: In
PHP.

#include <stdio.h>
int main(int argc,
{

char *argvl[])

printf("Hello World!\n");
return 0;

It’s fairly obvious to us where the transla-
tion string will need to go. At compile
time, however, we do not know what the
replacement string will be, or what lan-
guages it will need to be in. This prevents
us from including any translation data
directly into program. Instead, we must
build up catalogs of each word and
phrase used by our program, and employ
the gettext package to act like a dictio-
nary. This will replace our (English)
words with the correct foreign version at
run time. What is ‘correct’ will be deter-
mined by the user’s specific locale.

We are required to do two things,

1. Mark the source code to say ‘get me
the correct words for the phrase XYZ’

2. Build a translation dictionary for
each language we need to support

Marking the source is a simple
process. We, as programmers, must work
through each line of the code and indi-

cate which lines of text will need trans-
lating. We can do this by calling a special
function (called, not surprisingly,
gettext) that will consult the dictionary
and convert our string to something suit-
ably foreign.

printf(gettext("Hello 2
World!\n"));

This function can be found in the libintl
header file, so we must,

f#include <1ibintl.h>

Compiling under GNU/Linux requires no
extra link libraries for the code to work.
The word GNU is essential here. That is
because the internationalization features
are included directly in glibc. Users of
other Unix-like systems may not be so
lucky. However, without a language cata-
log, no translations will be made. That
doesn’t matter at the moment, since the
English text will be output in all cases
where a translation can not be found. C
programmers will also note that this
method is not all-encompassing, because
there is more than one way to declare a
string. However, we’ve only learnt one
way to mark strings for translation. So
we will need to use another method, to
cope with those cases where a function
call to gettext would result in a syntax
error. For example,

char *pHello = "Hello, 2
WorTd!\n";

To circumvent this problem, we need to
create a macro that includes a marker,
but has no adverse effect on the syntax.

jidefine gettext_noop(String) 2
String

char *pHello = gettext_noop("2
Hello, World!\n");

We then need to invoke the translation
module in the usual way, before we out-
put the string. Like so,

printf (gettext (pHello));
These markers not only perform the

translation when the program is running,
but indicate to us what text needs to be

translated. We shall shortly see a tool that
makes use of these markers itself to help
build the dictionary of translations. If we
were to build the dictionary manually
(but why would we?!), the gettext_noop
marker would be unnecessary.

Some programmers prefer to replace
this nine character marker with a single
character macro, such as the underscore.
This is because the word gettext (and
both brackets) can cause many lines to
break the 80 character limit. This is sim-

ply,

fidefine _(str) gettext (str)
fidefine N_(str) gettext_2
noop (str)

The GNU standard prefers a space
between function name and bracket, but
this is often omitted.

We can now move on and build our
foreign language dictionary.

Vienna Calling

Building a file that contains all the
strings in a program is not as time-con-
suming as you might think. Naturally, it
is a very common task, and can be
achieved by using a tool named xgettext.
This is one of the few instances where
the ‘x” does not stand for an X Window
program. Instead, it is short for ‘extract’.
This program will search the source file
for any string used in conjunction with
the function call gettext (or gettext_noop)
and place the text into a catalog file
(ending the suffix .PO) ready to be trans-
lated. The program understands enough
about C, and about other languages (see
box: xgettext: Supported Languages), to
understand the syntax of a function call,
and differentiate it from variables and
comments.

$ xgettext -d Tm helloworld.c
$ tail -n 3 Im.po
##: helloworld.c:5

xgettext: Supported
Languages

C, C++,ObjectiveC awk
PO YCP
Python Tcl
Lisp, EmacsLisp RST
librep Glade
Java

Bilingual Programming PROGRAMMING

Locale Categories

A category defines a set of data,and every
supported language has its own set of data.
The category might define the way to
impart particular information: numbers
over 1000 might be separated by commas or
dots, for example, or the date might be writ-
ten day-month-year or month-day-year. This
information is not related to the language
as such, which is why the term ‘locale’is
used, constituting both language and cul-
tural specifics. A directory is created for each
category.

There are standard functions to format
these locale strings. For example, strfmon
and strftime format the text for money and
time data, respectively.

Category Meaning
LC_COLLATE Order of string-collation
LC_CTYPE How to define characters. Echoes of

ctype.h as this also performs upper/
lower case conversion

The translated text. The focus of this
article

LC_MONETARY Format and symbols for money
LC_NUMERIC
LC_TIME

LC_MESSAGES

Format and symbols for numbers

Format and symbols for time and date

msgid "Hello World!\n"
msgstr ""

As you can see, each piece of text has a
marker ID and an equivalent string,
ready for translating. This string can
only hold a translation for one specific
language, so this file becomes a tem-
plate. Each translator takes a copy of it,
and translates the text within it to his or
her native tongue. Sometimes, this PO
file is renamed to POT to differentiate
between the template, and the language-
specific catalog files.

Note that xgettext will search for the
function name gettext. It does not under-
stand enough of the C syntax (or that
any language) to understand techniques
like #define _(str), given above. This
doesn’t preclude the use of such tricks
however. There are two popular solu-
tions. One is to specify the underscore as
an additional keyword that will act in the
same manner as if it were gettext.

$ xgettext -d Im -k_ 2
helToworld.c

Alternatively, you could pre-process
your C file (causing the macro to be
expanded) before running xgettext.

www.linux-magazine.com June 2004 ﬂ

$ xgettext -C -d Im <(gcc -E 2
helloworld.c)

In this example we specify the -C flag , to
indicate that the piped result is a C
source file. Users of automake will have
an easier life, since the Makefile will gen-
erate these files automatically.

You will also note that the file contains
comments using the familiar hash sym-
bol. These comments come in four
flavors, and are determined by the char-
acter immediately following the hash, as
seen in Table 1.

The xgettext program can also add
comments into the PO file when, for
example, it believes the strings may be
used for special formatting. The PO file
also contains a header to indicate the
revision date of the file, and the transla-
tor that last edited it.

Having now gotten this template file,
we need to create a catalog for a foreign
language. Like French.

Tour De France

We start by making a simple copy of the
template file, and adding the appropriate
French words to each msgstr.

msgid "Hello World!\n"
msgstr "Bonjour, Te monde"

We can add the string(s) by either modi-
fying the file directly, or using one of the
many tools available. Translators using
the Emacs editor have an advantage
here, since they may use PO mode. For
those who favor a GUI, the program
poeditor can also be used.

To be used by our Hello World pro-
gram, this text file needs to be converted
into a machine-friendly, binary, format.
The program that does this is called
msgfmt and creates a file (ending in .mo
instead of .po) that is more optimal for
accessing arbitrary strings. It is not only
trivial to use, but includes error checking

Table 1:Hash symbols

Character Commenttype Notes

.(period) Automatic Should not be touched

:(colon) Reference The file & line number
of the string

,(comma) Flag Toindicate the trans-
lation is ‘fuzzy’, for
example

(whitespace) Translator As entered by a human

which highlights the deliberate mistake
above. Did you spot it? See Listing 1.

The first warning simply reminds us
that we haven’t changed the header
information yet. We can fix that by
amending the line to use the appropriate
characterization.

"Content-Type: text/plain; 2
charset=IS0-8859-1\n"

To determine an appropriate code you
can refer to the box: ISO 8859, or [1] for
a more detailed analysis. This informa-
tion is of more use to translators than
programmers. As is the extensive func-
tionality provided by [2].

The error itself is easily fixed, and in
larger programs, more difficult to spot by
humans. It can also check the strings for
the correct number (and type) of argu-
ments using the -c option. We’re now
ready to test it!

Norwegian Wood

In order to convince our program to use
an appropriate language dictionary, we
need to add a couple of further lines of
code to indicate that we’re happy about
using a locale. These are straight for-
ward, and common to all such programs.

finclude <locale.h>

char *pPackage = "Im";
char *pDirectory = "locale";

setlocale (LC_ALL, "");
bindtextdomain (pPackage, 2
pDirectory);

textdomain (pPackage);

The bindtextdomain function indicates
the local root directory of our translated
catalog files, while textdomain requires
us to specify the name of our package, or
program. Ours is called ‘Im’, since we’ve
created an lm.mo catalog. Note that if
you specify a relative path for the

PROGRAMMING Bilingual Programming

localedirectory, be careful not to change
directory, as this path would then
become unreachable.

While in our local root directory, we
must create a locale directory, and copy
our [m.mo to the appropriate place in the
tree. That place being,

$ mkdir -p Tocale/fr/LC_MESSAGES
$ cp Im.mo Tocale/fr/LC_MESSAGES

Since the package is called ‘lm.mo’ in
every language, we use the directory
name to distinguish between a French
Im.mo and a German [m.mo. This name
is determined by the conventional lan-
guage codes, as detailed at [3]. The
directory named LC_MESSAGES is
needed because of the wide variety of
different locale information that might
be present. There can also be directories
to indicate the format of the date, and
how to represent numbers. See box:
Locale Categories for a full list.

Now you can run your program (with-
out having to recompile), using a French
locale, and witness the result.

$ LANG=fr_FR ./hello
Bonjour, Te monde

For a more permanent change of locale,
you must export the LANG environmen-
tal variable in the wusual way. For
example,

$ export LANG=fr_FR
$./hello
Bonjour, Te monde

If you're on an exclusively English sys-
tem this may not work, due to the fact
there is no French locale on your system
(other potential problems are covered in
[4]). The /etc/locale.gen file will indicate
which locales have been generated for
your machine, whereas the file /usr/
share/i18n/SUPPORTED will indicate
which ones can be installed (along with

Listing 1: Finding an error

05 msgfmt: found 1 fatal error

01 $ msgfmt 1Im.po

02 msgfmt: Im.po: warning: Charset "CHARSET" is not a portable encoding
name.

03 Message conversion to user's charset might not work.

04 Tm.po:19: “msgid' and “msgstr' entries do not both end with '\n'

n June 2004 www.linux-magazine.com

their appropriate ISO-8859 sets). Gener-
ating a French locale can be done easily
with,

$ su

you must be root to do this

Password:

echo "fr_FR I1S0-8859-1" >> 2

/etc/locale.gen

locale-gen

Generating locales...
fr_FR.IS0-8859-1...

Generation complete.

done

Debian users can also use dpkg-reconfig-
ure locales.

You can test this using your own pro-
gram, or (if you think the bug belongs to
Hello World!) one of the multi-lingual
GNU tools, such as rm.

$ LANG=fr_FR rm this_wont_exist
rm: Ne peut enlever “this wont2
_exist': Aucun fichier ou 2
répertoire de ce type

To make your dictionary available to oth-
ers, you should install it into the global
repository of .mo files at /usr/share/
locale/ (or the location specified by the
environment variable, TEXTDOMAIN
DIR). This directory uses the same hier-
archy given above. Installing your text
here (which also requires superuser priv-
ileges) means your code no longer needs
to specify a directory to the bindtextdo-
main function, and you can replace the
directory name with NULL.

Having now understood the technical
process behind multi-lingual software,
let us review some of the finer details we
need to consider when programming.

Spanish Eyes

Most developers have a method for deal-
ing with strings, like their favorite string
library, for example. They also have their
own methods for building strings
dynamically, either to add plurals, or
build large sentences from component
parts (like the verbal Lego of automated
train announcements). We shall now
cover a number of these methods, high-
lighting the problems (and solutions)
involved.

printf("Deleting %d file%s", 2
iNum, iNum==12"":"s");

Above is a common example to create a
plural. The case of ‘one file’ requires a
singular noun, whereas everything else
uses the plural, files. That’s in English!
Not all languages follow this pattern.
The case of ‘zero files’ might not be
plural (as in French), or there could be
separate words for zero, one and two
(such as those in the Baltic family). To
compensate for this, a separate function,
ngettext, is available which takes two
string ID’s (one for singular, and one for
plural) and a number. The number is
then used to determine which version of
that string should be used in translation.

printf(ngettext("Deleting %d 2
file", "Deleting %d files", 2
iNum), iNum);

Upon seeing the ngettext marker, the
xgettext program will generate two string
IDs in the .PO file, ready for the transla-
tor, along with a special c-format
comment, which we’ll come to shortly.

##: helloworld.c:32

#, c-format

msgid "Deleting %d file"
msgid_plural "Deleting %d files"
msgstr[0] ""

msgstr[1] ""

Not all the problems are solved by nget-
text though. At some point you will

1SO 8859

IS0 Characterization

1SO 8859-1 Western, or west European

150 8859-2 Central European, or east European

IS0 8859-3 South European, or Maltese (and
Esperanto)

1S0 8859-4 North European

1S0 8859-5 Eastern European, Cyrillic alphabets
like Russian

1S0 8859-6 Arabic

1SO 8859-7 Greek

1S0 8859-8 Hebrew

1SO 8859-9 Turkish

1SO 8859-10 Nordic (Sami, Inuit, Icelandic)

1SO 8859-11 Thai

1SO 8859-12 (was Celtic, but withdrawn)

1SO 8859-13 The BalticRim

1S0 8859-14 Celtic

1SO 8859-15 Euro

1S0 8859-16 South eastern European (incorporates
euro symbol)

Bilingual Programming PROGRAMMING

come across problems that occur when
we use two or more arguments in a
printf, because the word order is impera-
tive. Even in a simple (English) program,
a mismatched %d and %s can cause
printf to core dump. After translating a
simple phrase, such as “There are %d
files named %s”, it is not unreasonable
for the resultant text to appear as “With
the name %s, there are %d files”. What’s
more, since we (as programmers) do not
know about every other possible transla-
tion, it is not something we can prevent.
More subtle problems can occur with
phrases like “Copying file from %s to
%s”.

There are two methods of resolving
the word order problem. The first
requires that the translator modify the
wording so that the arguments always
appear in the right order. The msgfmt
command can then be called using the -c
option, so that it will perform checks on
the .PO file. This option actually per-
forms three separate checks. They are,
format (the one we need in this
instance), header (the presence and con-
tents of the header) and domain
(checking for problems with the domain
directives).

The second solution places the onus
on the programmer, and is preferred. In
this case, the format string must be
amended to describe the order of the
parameters. So, using our copy file
example above, this would give us,

printf(gettext ("Copying file 2
from %1$s to %2%s"), 2
pSrc, pDest);

The special format specifiers, % 1$s and
%2$s, are handled by the printf code in
glibc. Non-GNU variants may not be so
feature-full.

Having highlighted the word order
problem, you should now be aware that
constructing strings at run-time is a bad
idea. The solutions we have available to
us can only work when the entire string
is given to the translator. Splitting text up
into sections and using strcat (or similar)
should be avoided at all costs, since the
translator has no understanding of the
ordering (or the ability to change it), or
the meaning of the sentence. Each string
contained in the catalog must make
sense when presented on its own.

www.linux-magazine.com June 2004 “

All the examples in this article use ASCII
characters.This covers most western lan-
guages, but neglects those character sets
requiring two bytes, such as Chinese. In
order to support them fully, we need to
work in Unicode. This involves a much larger
quantity of work, as the basic char type can
not be used, and is instead replaced by
wchar _t. Also,many of the well-known func-
tions (like sprintf) need to be adapted to use
their equivalent wide versions, like swprintf.

/* Don't code like this!! */
strcpy("Copying file from ");
strcat(pSrc);

strcat(" to ");
strcat(pDest);

In some applications, the most difficult
word to translate is ‘the’! English has
only one word for the definite article,
‘the’. French, German, Spanish, and
many others don’t. Depending on the
language, they may have special versions
for masculine, feminine, neuter and
plural. The same is true of the indefinite
article, ‘a’. Normally, these words will be
included as part of the standard transla-
tion. By now you should have learnt that
building strings dynamically is not a
good idea. In some cases it can be very
tempting to cut down on the quantity of
translations required as in Listing 2.

We should modify this so that the
strings read ‘a directory’ and ‘a file’, so
the translated versions will work regard-
less of gender. However, you might
argue, if we also had a portion of the pro-
gram that produced a short version of

the file listing, we would be doubling the
work for the translator! For instance, in
Listing 3.

That’s true. We are doubling the work!
However, this extra work is minimal.
Especially compared to the programmer
hassle that might otherwise be involved,
or the cringe-inducing gender misuse
when the wrong version of ‘the’ is
prepended to the words.

China Girl

The last implementation problem we
shall mention involves aesthetics. This
refers to the screen layout, the menus of
a GUIL, and the use of tab stops. Although
your program may look nicely formatted
in English, as soon as any of the words
change, your pre-determined layout will
break. German words, for example, are
on average 50% longer than their Eng-
lish equivalents. You have two choices.
Either ignore word length, or code
around it.

Most (if not all) command line utilities
are unconcerned with special formatting.
The information is functional and uni-
form, making it suitable for parsing by
scripts. GUI software may explicitly
place text in two columns, at X1 and X2,
in order to appeal to the end user.
There’s nothing wrong with wanting to
appeal to the end user! Unfortunately,
when running under a different locale,
the text in the left column may overrun
the text in the right.

To avoid this problem you will need to
write some more code. This might
involve adjusting the position of the
right hand column, perhaps by calculat-

Listing 2: Smaller translations

01 if (mygetfiletype(szFilename) == DIRECTORY)

02 pFiletype = gettext ("directory");
03 if (mygetfiletype(szFilename) == FILE)
04 pFiletype = gettext ("file");

05 printf (gettext ("%1$s is a %2%s"), szFilename, pFiletype);

05 printf("%s :
required here */

Listing 3: Doubling the work

01 if (mygetfiletype(szFilename) == DIRECTORY)

02 pFiletype = gettext ("directory");
before - does this mean less work? */

03 if (mygetfiletype(szFilename) == FILE)

04 pFiletype = gettext ("file");

%s", szFilename, pFiletype);

/* same strings as

/* no translation

PROGRAMMING Bilingual Programming

ing the longest piece of text in the left, or
you might need to word-wrap every-
thing. It might involve scrolling the text
within the visible window (like XMMS).
It might simply chop all characters that
overrun, and ask the translator for
shorter versions. The solution you
employ will vary according to the
amount of work you, and your transla-
tors, are willing to do. Only applications
that sell on their presentation abilities
(like games) should consider this a
necessity.

Vienna

As software develops, more and more
strings will be added to the program. Re-
translating the whole program every
time is obviously wasted effort. So
instead, we should use the msgmerge
tool. This takes the original language
template (the .PO file, that’s often
renamed to .POT) without any transla-
tions, and the newest language-specific
catalog to build a new .PO. This new file
contains all the original translations,
combined with the new, as yet untrans-
lated, strings.

$ msgmerge old_po_file.pot 2
current_language_po.po >2
new_language_po.po

Metropolis
With the gettext package, we can create
truly multi-lingual software, even if we
can’t speak any of the languages in ques-
tion. Using separate language catalogs
allows the translation work to be distrib-
uted amongst those who can speak
different tongues, without having to
recompile the code. This makes it a fully
data-driven, distributed, piece of devel-
opment work.

So with that thought I bid you all a
fond farewell. Au revoir. Auf Wiederse-
hen. Adiés and Arrivederci!]

[1] 1508859 Alphabet Soup: http://wwwwbs.
cs.tu-belin.de/user/czyborra/charsets/

[2] Dataon languages:
http://www.eki.ee/letter/

[3] Language codes: http://www.loc.gov/
standards/is0639-2/langcodes.html

[4] FAQ for GNU gettext:
http://www.haible.de/bruno/gettext-FAQ.
html#integrating_noop

m June 2004 www.linux-magazine.com

