
find the original documentation lurking
at [1].

PHP as we know it really began with
version 3, released in June 1998. Unlike
the upgrade status to PHP/FI 2.0, PHP 3
was a complete rewrite by Rasmus,
along with Andi Gutmans and Zeev
Suraski. From a technical standpoint, it
was very much improved, and more
capable of dealing with high volume web
sites and e-commerce applications. It
also featured the first signs of object ori-
entation (see Box: Uh Oh!), and a
change of acronym to the still-in-use,
PHP: Hypertext Preprocessor.

Version 4 was essentially an extension
of 3, using the same syntax and seman-
tics. It featured output buffering,
improved object orientation, and various
new features (like references) and
instructions, such as the foreach control
structure. Behind the scenes too, a lot
had changed, as the PHP code base had
been modularized and optimized, with
some code running over 200 times faster.

This was largely thanks to a new
engine, known as Zend, which was a
complete re-write of the original. The

PHP community was also growing by
leaps and bounds: a number of third
party databases were now supported, the
PEAR repository came into being, and
the documentation had grown into a
comprehensive, and very usable, online
manual [2], currently available in 26 dif-
ferent languages.

PHP5 is claimed to be the latest and
best version of PHP, utilizing another
new code engine (Zend 2), an impressive
new object model and a host of new fea-

Does its latest incarnation, PHP 5,
do justice to its heritage, or is it
destined to become a skeleton in

the closet? Steven Goodwin finds out.

You’re History
The first version of PHP was written in
1994 by Rasmus Lerdorf and constituted
a number of Perl scripts for building web
pages. The term PHP/FI was coined in
1995, and was followed by PHP/FI 2.0 in
1997, with PHP/FI standing for Personal
Home Page / Forms Interpreter. Even
though some of the functionality that we
know today was present in these early
versions, beyond a small cult group of
developers, it was largely unheard of.
Curious readers and history students can

Of all the programming languages to

have emerged in recent years, PHP is

one of the great success stories. It has

fostered a loyal community of devel-

opers and, despite some well

documented issues, still maintains its

popularity. BY STEVEN GOODWIN

The Next Generation

Onward and upward

64 July 2004 www.linux-magazine.com

PHP 5PROGRAMMING

Object Orientation is more a paradigm than
it is any particular type of programming.
When used correctly, its benefits include
code re-use, abstraction of detail, data
encapsulation and polymorphism.The
implementation of an OO solution involves
objects, a much over-used term that (in this
instance) indicates that both the data, and
the code that manipulates it, are bound
together in one unit. Each object is often
represented by a class.The data held within
this class represents its current state, and
the code that affects it are called methods,
or member functions.

Uh Oh!

When builders go down
the pub they talk about
football. Presumably
therefore, when foot-
ballers go down the
pub they talk about
builders! When Steven Goodwin goes
down the pub he doesn’t talk about
football. Or builders. He talks about
computers. Constantly…

T
H

E
 A

U
T

H
O

R
w

w
w

.space-center-brem
en.de

tures. It has gone through four beta ver-
sions with, at the time of writing, the
current version standing at Release Can-
didate 2, made available on the 25th
April 2004. It is claimed stable, but “still
not recommended for mission-critical
use”. True stability will come with time,
although the experiments of this author
have shown it perfectly usable for small
to medium scale work.

Little Fluffy Clouds
The source code for PHP 5 can be down-
loaded from [3] as a five MByte tarred
gzip file, although the only official bina-
ries available are for Windows. Brave
Debian users can grab the .debs from [4]
by adding the line,

deb http://packagesU
.dotdeb.org ./

to their /etc/apt/sources.list, although
this will not be guaranteed to work.
Assuming you’re compiling from source
the traditional trio is employed thus,

$./configure --with-mysql U

--with-apxs
$ make
make install

The options for ./configure may need to
be adapted, depending on whether you
have (or want) MySQL support. The pri-
mary dependency essential for PHP 5 is a
recent version of libxml2 (version 2.5.10
or above), but once that’s available, a
basic compile and install can be accom-
plished with a fairly minimal time outlay.
Documentation is included in the pack-
age, which also details how to run PHP 4
and 5 alongside each other. If you’re
compiling PHP 5 as an Apache module,
then the traditional rules for building
DSO’s (Dynamic Shared
Object) apply.

A Grand Don’t Come
For Free
The first, most obvious, ques-
tion with such a new system
is a consideration of old code.
Does it break anything? Is
this a backwards step? Fortu-
nately, the answer appears to
be no. Most of the changes in
this release have paid lip ser-

vice to the backwards compatibility
issue. The core language looks no differ-
ent to that of PHP 4 and although there
have been a few backwards incompati-
ble changes, these have been in the
name of stricter standards, and are
detailed in [5].

If your code is polite and follows the
described function behavior to the letter,
most of these changes won’t affect you,
but be warned as array_merge now only
accepts arrays. This may cause E_WARN-
INGs to appear without apparent reason.
It is worthwhile to note that illegal string
offsets are now considered errors (not
warnings). Note also that,

$app.is_object()

returns an object and one needs to use
the modern form,

is_object($app)

to get a boolean value. However, most
practical code will not (or should not!)
have these errors present. For the termi-
nally paranoid there is a compatibility
mode. This can be used to determine
whether the bug is in your code, or the
new PHP 5 interpreter. It can be con-
trolled with the line,

zend.ze1_compatibility_modeU
= Off

in your php.ini file. Two sample ini files
come with PHP 5, a development version
and a more secure release version.
Although neither sees the need to use
the compatibility mode.

Developers working on the bleeding
edge will also have realized that studly-
Caps (first word in lower case, and the
initial letter of every other word being

capitalized) are used for the extensions
like SQLite and SOAP.

There are a slew of new functions in
PHP 5, all detailed in [6]. Most of them
provide better support for the core lan-
guage, although most have been
available before in libraries, or as user-
added comments in the standard
documentation on the main PHP site [2].
These functions break down into five
basic groups. See Table 1.

Before we launch into specific details
of some of these features, there are two
development functions to highlight. The
first is var_dump which has an improved
look, and expands the information inside
the class, as does print_r.

// Example of var_dump
object(MyName)#5 (2) {
["firstName"]=>
string(6) "Steven"
["lastName"]=>
string(7) "Goodwin"

}

The second is a new function called
debug_backtrace, which returns an array
showing the call stack. This has been
partially back ported into PHP 4, but
looks to be a stalwart for all PHP devel-
opers looking for quick, light weight,
debugging assistant, without resorting to
xdebug.

The Invisible Man
Among the list of core language features
there’s a small selection that has been
devoted to code that doesn’t exist! That
is, if a non-existent class method is called,
the special __call function is invoked.

class Reverse {
function __call($function, U

$arguments)
{
return strrev($function);

}
}

$r = new Reverse;
print $r->this_doesnt_exist();

Or, if you try to access a member vari-
able that doesn’t exist, one of two
different functions will be called,
depending on whether you tried to read
from, or write to, the variable.

65www.linux-magazine.com July 2004

PROGRAMMINGPHP 5

Area Number Notes
Arrays 6 Mostly to determine differences between

arrays
InterBase 19 Various functions for Interbase users
iconv 7 Handles internationalization features, and

MIME headers
Streams 8 Most supplying useful low level socket

handling functionality
Misc 34 General purpose functions, including PHP

syntax checker, string conversion and process
control

Table 1: New function groups

the appropriate class files at the start,
compared to sporadic on-demand load-
ing (which may include disk seek times)
throughout the script’s lifetime.

Be careful when using __autoload
since file names are case-sensitive, but
PHP class names are not. This could
cause missing classes to try and load
non-existent files from disk. Porting code
from a Windows environment will often
include at least one of this variety!

The Girl in the Other Room
Of all the new features in PHP 5, one cat-
egory stands proud: object orientation.
OO features have been part of PHP since
version 3, although they have always
been rather minimal in scope. PHP has

never been an OO language, merely a
language that happens to support some
object oriented features – namely classes.

However, PHP’s previous support for
OO had very limited encapsulation and
data hiding capabilities, making it
unsuitable for large projects without
requiring a great deal of care. PHP 5 adds
such a wealth of OO functionality that in
one fell swoop it sits close to OO-Perl
and Ruby. As a paradigm, OO is well
understood and (despite the bad press
attributed it, thanks to the nuances – and
nuisances – of C++) is quite suitable
for large scale operations. Many toolkits,
such as GTK, are based on OO princi-

ples, which makes it easier for PHP 5
developers to interact with them.

There are two main areas of object ori-
ented study in PHP 5. The first are the
changed features. These are cases where
improvements have been made to the
language that allow traditional OO
design patterns to be used natively
within PHP. These were possible previ-
ously, albeit with some minor code
hacks. The second involves new features
that haven’t been technically possible
before, because of the language design.
Let us cover the improvements first.

The biggest improvement is the way
references and object copying occur.
Previously, the object model was to
always copy objects as they were passed

into, and out of, func-
tions. This made it
difficult to handle
objects efficiently, and
so references were
added. Any PHP code
with extensive object
use would therefore be

full of the & symbol, and omissions
could lead to hard-to-spot bugs.

01 class MyName {
02 var $name;
03 }
04
05 function ChangeNameU

(&$newname)
06 {
07 $newname->name = "Steev";
08 }
09
10 $me = new MyName;
11 ChangeName($me);
12 print $me->name;

01 class Length
02 {
03 function __get($variable_U

name)
04 {
05 return strlen($variable_U

name);
06 }
07
08 function __set($variable_U

name, $value)
09 {
10 print "I can't set the U

length of $variable_name U

to $value!";
11 }
12 }
13
14 $len = new Length;
15 $len->thisname = 10;
16 print $len->thisname;

All three of these functions only work as
class methods, so you can not have a
global __set function to cope with every
non-handled case.

On the surface, these might appear as
quirky functions, but of little use. How-
ever, they do have a number of serious
applications. The __call function, for
example, could be used to create mock
objects, while __set and __get can pass
information to and from a database,
while remaining completely transparent
to the end user.

Another feature of this ilk is
__autoload, which gets called whenever
a non-existent class is instantiated. The
classic example for this feature is to load
class files on demand. For example,

function __autoload($classname)
{
require_once "$classname.inc";
}

$me = new UnknownName;
// Causes UnknownName.inc to U

be loaded before class creation

This allows the script to start and run
very quickly, only loading additional
class resources when it needs to, allow-
ing larger class hierarchies to be
employed without degraded the per-
formance in simpler cases. High
performance environments must be
careful to consider the load time for all

66 July 2004 www.linux-magazine.com

PHP 5PROGRAMMING

Type Accessible to own class …to derived classes ..to the world

Public Yes Yes Yes

Protected Yes Yes No

Private Yes No No

Table 2: Member Access

01 // sample file in boxout: London pubs
02 $pub_list = simplexml_load_file('londonpubs.xml');
03
04 // iterate through each 'pub' element
05 foreach ($pub_list as $pub) {
06 if ($pub->name == $rate_this_pub) { // check name element
07 $pub->name['rating'] = $rating_for_pub; // write a rating

attribute
08 print "Rating changed for $pub->name, to $rating_for_pub";
09 }
10 }
11
12 $new_xml_data = $pub_list->asXML();
13 file_put_contents("newlondonpubs.xml", $new_xml_data);

Listing 1: London pubs

This simple example, to print the name
‘Steev’, would fail to work if the & was
omitted in line 5, as a brand new copy of
the MyName class would have been cre-
ated and assigned to $newname. The
name ‘Steev’ would then have been
assigned to this new copy, and not the
object passed in from line 11.

With PHP 5, class objects are passed
as a reference by default, not value, so
the & symbol is no longer needed, mak-
ing it less error prone. The reference
syntax is still maintained for compatibil-
ity.

05 function ChangeName($newname)

The use of this new syntax is encour-
aged, and should lead to the older
explicit references being deprecated in
future versions.

The only problem with this feature is
that the code appears to be run-time
compatible with versions 3 and 4 – but
isn’t! In the rare cases when your older
code relied of the copying of objects, you
will now need to clone them instead.
This is a new feature, made necessary
because of the new object model. Calling
the __clone function will make a bitwise
copy of the existing object, as will the
more traditional,

$new_object = clone $old_object;

Furthermore, any class that overloads
the __clone function can dictate how it
should be copied, for cases where refer-
ence counting is required, or where the
standard copy is not good enough.

Guns Of Brixton
Probably the most visible addition to
PHP’s OO handling code is represented
by three new keywords: public, private
and protected. Under PHP 4, every mem-
ber variable of a class could be read by
anyone. From any code. Placed any-
where.

Such variables are termed public, in
much the same way as permissions in
the Linux filesystem. By convention, any
variable prefixed with an underscore was
considered private and should only be
accessed by the class itself. However,
this is only a convention, and before
PHP 5 could not be guaranteed. Now it is
possible to prefix a member variable (or

function) with the word private, and this
will be enforced.

01 class MyName {
02 private $name;
03 }
04
05 $me = new MyName;
06 print $me->name;

Which produces the error,

Fatal error: Cannot access U

private property MyName::$name U

in somefile.php on line 6

Even derived classes will not be able to
use $this->name to access the variable.
Any attempt to do so will cause PHP to
create another public variable that be-
longs to the derived class. This can cause
subtle errors, but private members and
methods are easy enough to learn, and
can add great security to your code, es-
pecially when you’re developing
modules.

Protected is a further extension of pri-
vate. Any member that is protected can
be accessed by the class itself (just like
private), but it can also be used by any
derived class, such as MyFullName:

class MyFullName extendsU
MyName { ...

See Table 2, on the previous page, for a
quick breakdown of these security defin-
itions.

In addition, there is a new keyword
called final which can be added to a
member function to prevent it from
being derived or extended any further.

All member variables, and methods,
are created as public by default. This
ensures backwards compatibility, and
only functions called public, private or
protected are likely to have problems.

Cornflake Girl
Another important change has been with
the constructors. Instead of creating a
function with an identical name to the
class,

class MyName {
function Myname()
{
// This is the constructor,U

called whenever a new U

MyName is created!
}

}

a constructor can now be created by
using the new name __construct. At a
first casual glance, this appears, on the
surface, to only be a minor change, how-
ever it becomes a major time saver if you
need to change the class hierarchy, since
calling the parent class’s constructor
now becomes,

class MyFullName extends U

MyName {
function __construct()
{
parent::__construct();

}
}

In large formal systems, the class hierar-
chy should not be changed often (if at
all) as this can break the design. How-
ever in smaller ad-hoc systems this can
prevent bugs from creeping in when new
classes are added in between a parent
and its child.

There only appears to be one primary
limitation with constructors and even
that limitation is fairly inconsequential
in practice. That is, you can not overload
the constructor as you can in other
Object Orientated languages. This limits
the number of ways you can create the
object:

67www.linux-magazine.com July 2004

PROGRAMMINGPHP 5

A sample XML file used in the example might appear thus:
<pubs>

<pub><name>All Bar One</name><address>26-30 London Bridge U

Street, London, SE1 2SZ </address></pub>
<pub><name>The Banana Store</name><address>1 Cathedral Street,U
London, SE1 9DE </address></pub>
<pub><name>The Barrowboy and Banker</name><address>6-8, U

Borough High Street, London, SE1 9QQ </address></pub>
</pubs>

London Pubs

(such as database locks or file handles)
may not. Such functions are declared
using the name __destruct.

Backwards compatibility is still an
issue in OO, and fortunately, there are
precious few cases that could fail. How-
ever, any member function called
__construct or __destruct will cause the
code to behave in an undetermined man-
ner (especially if the function name
doesn’t reflect its traditional purpose).
As will any functions using the other
new keywords.

Stuck On You
Another very welcome improvement is
the ability to use static methods and
member variables. A static member is
one that is identical across every
instance of the class. Previously, it was
possible to write code that looked like
static members were available, but the
popular method of doing so (given
below) requires extra memory.

01 class PHP4FakeStatic
02 {
03 var $local;
04
05 function PHP4FakeStatic()
06 {
07 static $single_var=0;

08
09 $this->local =& $single_U

var;
10 }
11 }

So, if you wanted to know how many
MyName classes had been created, in
PHP 5 you could write:

01 class MyName {
02 static $class_count = 0;
03
04 function MyName()
05 {
06 MyName::$class_count++;
07 }
08 }
09
10 $you = new MyName;
11 $me = new MyName;
12 $them = new MyName;
13 $everybody = new MyName;
14
15 print MyName::$class_count;

Static members do not have a specific
instance of the class, so they must be
set (and read) without $this, as seen
in line 6. Similarly, member functions
can be called directly using the class
name::function name() syntax. How-
ever, be warned that because static
members exist outside of any specific
instance, it is not possible to access any
non-static data from within the class.
Any static function that tries to use $this
will be greeted with the error,

Fatal error: Using $this when U

not in object context in U

somefile.php on line 6

This construct can also be used to create
a singleton, as mentioned above. The
singleton a design pattern whereby only
one instance of a class can ever be cre-
ated, and is useful for handling log files
and other resources where it doesn’t
make sense to have two.

01 class Singleton
02 {
03 static private $instance U

= NULL;
04
05 private function U

__construct() { }

//Not directly available in PHP5
$me = new MyName("Steev");
$full_me = new MyName("Steven",U
"Goodwin");

If you need this functionality, I suggest
using default parameters in the construc-
tor and patching the data accordingly.

function __construct($name1="",U
$name2="")
{
if ($name2 == "") {
$this->name = $name1; U

// no surname
} else {
$this->name = "$name1 $name2";
}
}

It is also possible for constructors to be
made private. This trick prevents other
classes from creating specific objects, as
is required when implementing single-
tons, as we’ll see shortly.

Destructors are a welcome addition to
PHP. They are called automatically
whenever an object is destroyed, which
traditionally occurs when the code has
finished executing. Although the mem-
ory that a class uses is always reclaimed
automatically, any external resources

68 July 2004 www.linux-magazine.com

PHP 5PROGRAMMING

Feature Notes
Object references Removes need for &
Constructors and destructors Now have unified name, regardless of class name
Public/private/protected For data hiding
Static members One copy of a variable for all instances of call
Final keyword Prevents further derivation of classes
Class constants Use const cvar = 3.1415 instead of define
Objects copied by __clone function Needed now objects are passed by reference
Type hinting Indicates the required type for a parameter. A nod to a more strongly-typed PHP
Instance of It is possible to determine the type of a dynamic object with $foo instanceof

SomeClass
Indirect referencing Allows $foo->a->b; in some cases
Automagic class loading Use __autoload to bring in appropriate files
Setters and Getters Overload member variable access with __get and __set
Runtime method overload __call will be invoked if the original function doesn’t exist
Abstract classes and interfaces For more complex OO code
Exceptions Exceptions can be caught and thrown as per other languages
SimpleXML Supports loading and saving of well formed XML
SQLite An available database without running extra services. Not recommended for high

loads
Filters Flexible text processing, with built in filters for rot13
Streams To load data resources from arbitrary locations, using various protocols (e.g. ftp, http).

Improved socket handling too
Namespaces These have been removed!
Extensions Various extensions for SOAP, SimpleXML and MySQL.

PHP 5 Features in Brief

06
07 static function get()
08 {
09 if (self::$instance U

== NULL) {
10 self::$instance = new U

Singleton();
11 }
12 return self::$instance;
13 }
14
15 function hello()
16 {
17 print "Hello, U

singletons!";
18 }
19 }

Every member of the singleton class can
only be called through the get function,
as there is no other way to get a refer-
ence to the singleton object. This comes
from the private constructor, which stops
any class (other than itself) creating an
object. For example,

print Singleton::get()->hello();

Let It Grow
PHP 5 features several new, and
improved, extensions. MySQLite is cer-
tainly one of the most talked about, as is
the closely related MySQLi (which is the
MySQL improved version, supporting
amongst other things, prepared state-
ments and variable bindings). However,
the inclusion of SimpleXML is probably
my favorite. While not as feature-full as
DOM, it does provide a very efficient
way of handling simple XML, such as
data and configuration files.

After reading the XML into a Sim-
pleXML object you can modify the data
within PHP (using the standard data
types), and then save the same object
out to disk by serializing it into an XML

text stream with asXML. See Listing 1. At
this point it appears as standard, compli-
ant, XML. See box: London Pubs.

When working with your own XML
files, there are few limitations and even
fewer problems. It just works! However,
in more complex applications the limi-
tation of namespaces within XML can
be problematic, as SimpleXML ignores
them, acting is if they don’t exist.

When SimpleXML is not enough and
you need more powerful editing features,
don’t worry. There’s no need to port
your code over to DOM, since two con-
version functions have been provided.

$sxe = simplexml_import_domU
($dom);
$dom = dom_import_simplexmlU
($sxe);

PHP 5 has better support for various
XML technologies, such as XSLT and
SOAP, as the library underneath Sim-
pleXML (libxml2) is used throughout.

Martha’s Harbour
In general, a lot of good work has found
its way into PHP 5. The integration of
SQLite will appeal to those wanting to
experiment with databases without the
hassle of configuring extra daemons, and
the Simple XML module will make it so
easy to migrate away from flat files that
many people will do so. Both should
raise the standard of available PHP appli-
cations. These are just two of the many
good modules available with version 5.

Alas, space does not permit detailed
explanation of them all, so a brief run
down of all the new features can be
found in the box: PHP 5 Features in
Brief, and on the web at [7] and [8].

However, the biggest selling point of
PHP 5 must be the new object model.
Almost everything else has been avail-
able before as a third party module, or as
library code.

The OO in 5 is very good, and such an
improvement on previous versions that
many old hands will have to unlearn
their various tricks in order to write
effective PHP 5 code. For them, this tran-
sition will be the hardest part of
migration. Not the new syntax rules (as
they are simple to learn), but the feeling
of loss as once you start using the new
syntax you’ll never want (or be able) to

go back to PHP 4. With this in mind,
PHP 5 should be considered completely
separate from PHP 4, and you should not
try to write code compatible with both.

There may also be some pain during
the migration process, as occasional
problems with old code will arise. Most
of these should be caught with sufficient
code auditing. When trialling PHP 5 on
my own system for example, there were
very few niggles, and my home site
(with around 100 pages) took under an
hour to get working.

For those coming to the language
afresh, especially those looking for good
OO capabilities, PHP 5 hits the spot in all
the right places and appears as an effort-
less OO language. It should encourage
developers who have been weary about
PHP to return with renewed vigor, and
may even convert a few programmers
from other languages.

Only time will tell… ■

69www.linux-magazine.com July 2004

PROGRAMMINGPHP 5

The penetration of PHP is quite incredible.
For instance, according to SecuritySpace.com
PHP is installed on over half of the Apache
servers surveyed in March 2004, and on 33%
of the 47,173,415 domains queried by Net-
craft in the same period. Also, from a study
of all the projects in the SourceForge.net
repository, 11.2% (4,433 of them) are written
in PHP, a feat only bettered by C/C++ and
Java.

Mr. Big

Despite all the newness present in PHP 5, a
number of older problems still remain.There
is still no stack protection, for example, and
most code that attempts to allocate too
much memory (forced over-allocation) will
still crash. Fortunately, most of these cases
can only happen through malicious intent.
There is also a problem when using the
(deprecated) dl function, whereby an exten-
sion loaded twice (one explicitly with dl,
followed by one implicitly through new) can
cause a fatal exit as the extension is deleted
before the objects created by the library are.

Problems

[1] PHP/FI Version 2.0:
http://www.php.net/manual/phpfi2.php

[2] PHP manual:
http://www.php.net/manual/en/

[3] Latest stable version of PHP:
http://www.php.net/downloads.php#5

[4] Stable Debian repository:
http://www.dotdeb.org/

[5] Backward Incompatible Changes:
http://www.zend.com/manual/
migration5.incompatible.php

[6] New PHP 5 functions: http://www.zend.
com/manual/migration5.functions.php

[7] Changes in PHP 5/Zend Engine 2.0:
http://www.php.net/zend-engine-2.php

[8] Migrating from PHP 4 to PHP 5: http://
www.zend.com/manual/migration5.php

INFO

