
The basic structure of Lua (pro-
nounced LOO-ah, and whose name
means moon in Portuguese) is that of a
language interpreter (the program, lua)
which generates and runs byte code, a
set of optional basic libraries (for input
and output, maths, and so on, all written
in standard C), and a compiler (luac) to
generate byte code offline. Because of
the highly standard nature of the Lua
code base, it works on almost any plat-
form that sports a C compiler. The Linux
version clocks in at just over 100K, with
the combined set of default libraries tak-
ing a further 72K. Many embedded
projects have taken advantage of its
small size (and its ability to build any-
where), as have several games
companies, such as Criterion Studios,
LucasArts (Grim Fandango), and
BioWare (with MDK2 and Baldur’s
Gate). For a longer list of uses visit [1].

Harvest Moon
As a language, it has all the features
you’d expect from a functional scripting
language, including the obligatory online
manual, available at [2]. First off, we

have the data types. These may not be
plentiful (see Table 1: Lua Types), but
they are capable of satisfying a program-
mers usual desires. The variables
themselves follow the ideals of a loosely-
typed language, and so can hold any
type it pleases, at any particular time.
Attempting to use undefined variables
causes them to have the type nil, which
can cause some operations (for example,
string concatenation) to fail. The Lua
concept of a ‘number’ is equivalent to
the C type double. However, perfor-
mance junkies (using version 5) can
change this to float (or even int) and
recompile Lua. Just add

#define LUA_NUMBER float

before #includeing lua.h. Anyone using
version 4, or earlier, will need to manu-
ally modify the code a little further.

There is also a range of flow control
statements, that fit the following:
• do block end
• while exp do block end
• repeat block until exp
• if exp then block end
• if exp then block else otherblock end
• if exp then block elseif exp then

otherblock end [and so on…]
• for var=start,end[,step] do block end
• for var in iterator do block end

From a linguistics point of view, Lua
could be considered fairly ordinary!
It has all the necessary features to

make it a usable language, but lacks any
strong selling points in the vein of Perl’s
regular expressions, or C’s speed of exe-
cution. Its strengths do not lie with
individual parts of the language, but how
it functions as a whole, and how well it
connects with the outside world.

We shall be looking at Lua as a cus-
tomization and configuration tool,
showing how the end user can cus-
tomize particular software (using elinks
as an example), and what steps must be
taken in order to implement such func-
tionality in their own applications.

The Whole Of The Moon
Lua began in 1993 as a language for
Brazilian academics at Tecgraf, in the
Pontifical Catholic University of Rio de
Janeiro (PUC-Rio). Its purpose was to
provide a simple method of extending
applications through a basic procedural
language, traditional datatypes, and a
virtual machine. All these features have
remained a fundamental part of Lua to
the present day, with the
release of version 5.0.2
(for minor bug fixes) on
March 17, 2004. Its
uptake has been as
steady (some would say
slow) as its update cycle;
just 12 public releases in
its entire 11 year history.
However, as a compensa-
tion, there is little chance
of code breaking
overnight, and every
release so far has been
incredibly stable.

As a scripting language, Lua is fairly unique. It has a strong following from two

niche markets: Linux users, and computer game programmers. What is it about

this language that appeals? What is so special? Steven Goodwin investigates.

BY STEVEN GOODWIN

Lua – The Next Generation

Moonshine

70 August 2004 www.linux-magazine.com

LuaPROGRAMMING

w
w

w
.photocase.de

Type Identifier Name for lua_istype etc
Nil LUA_TNIL nil
Number LUA_TNUMBER number
Bool LUA_TBOOLEAN boolean
String LUA_TSTRING string
Table LUA_TTABLE table
Function LUA_TFUNCTION cfunction
Userdata LUA_TUSERDATA userdata
Notes
The identifier can be used to translate the constant into a string inside C, using
lua_typename(lua_State *L, int type)
lua_isnumber accepts both numbers (123) and numerical strings (“123”)
lua_toboolean returns 0 for false and nil, and 1 for everything else

Table 1: Lua Types

A comment, about a wry comment,
commenting about programmer
originality!
function hello()
write(“Hello, Lua!“)
end
hello()

Listing 1: hello.lua

Nothing unusual there, although C
programmers should be aware that the
‘end’ value is also evaluated in the for
loop. Note that all statements use the
word end as a block terminator, instead
of the more traditional brace. This sim-
plicity is a very obvious attempt to coax
non-programmers into the world of
scripting. The preference of words over
symbols is also apparent when you real-
ize the operators !, && and || have been
replaced with their alphabetic counter-
parts, not, and, and or.

The syntax also removes some of the
restrictions found in other languages. For
example, two (or more) parameters can
be returned from functions, without any
problem or esoteric magic.

function onetwo()
return 1,2
end
one,two = onetwo()

Finally, Lua contains local and anony-
mous functions. Taking these in order, a
local function is one that can only be
called from within the function it is
declared in. This is uncommon to C pro-
grammers, but fairly familiar to
everybody else. Secondly, anonymous
functions mean we can embed an entire
function in the place we would place a
callback. This prevents additional, arbi-
trary, functions within the code.

For more detailed information on the
syntax, you’d do well to read the original
version available at [2]. For an interac-
tive experience, the message boards at
[3] are available.

However, Lua’s features as a language
are not what sells it to developers. It is
more its use as a configuration tool that

is considered its killer app. It is so easy
for an application developer to add Lua
scripting support that one wonders why
it’s not more prevalent. It can be used to
create plug-in modules for software, or
as a configuration file. This need not be a
static configuration, like most other
applications. You can create something
much more powerful and flexible. Some-
thing dynamic!

Dynamic configurations have been
something of a rarity. Only the more
complex applications, such as Apache,
have them. Even then, directives such as
IfModule are fairly minimal, and have
limited scope. A truly dynamic configu-
ration can ease the install process by
preparing itself when the program is run,
and adapt itself according the directory
structure, number of users, current
bandwidth, processor load, and so on.

Lua also provides a method to add
hooks into software for customization.
We shall look at this, adding some sim-
ple hooks into the text-browser elinks.

Dancing in the Moonlight
Hooks are a method whereby a program
(in this case, elinks) calls a special func-
tion every time it is about to do
something important. This ‘something
important’ might be when jumping to a
URL, or downloading a page of HTML
from the server. Under normal, non-
hooked, circumstances, this special
function will do nothing! Nada. Zip. It
will simply return control back to the
main program and let it jump to the URL
it was going to jump to in the first place.

However, when a hook is placed into
this special function, control is passed
out of the main program into the hook
function. At this point, the hook function

has control of the data and can re-write
the URL, for instance. As these hooks are
programmed from a Lua program – our
Lua program – we can re-write them
according to our personal preferences.

For example, I may wish to visit one of
my own web sites, www.BlueDust.com,
by typing bd. I could do this by creating
a simple hook into the ‘jump to URL’
routine with:

if (url == “bd“) then
return “www.bluedust.com“
end

Lo and behold, instant configuration!
The demonstration program for this

article, elinks, has a number of different
hooks, and these are given in Table 2:
Hooks and Crannies. We can use some of
these to customize the application.

As well as elinks calling our script, it is
possible for our script to call elinks
through callbacks. This lets us retrieve
information, such as the title page, that
isn’t passed through as a parameter. This
is useful with key shortcuts as what
parameters should be passed in to them?
URLs? Bookmark lists? This is where the
callback functions come into play.

These callbacks are specific functions
that elinks has decided that we (as a
script) may use. It allows us to call them
as if they were part of the Lua script
itself. They include functions such as
current_url and current_title. A list is

71www.linux-magazine.com August 2004

PROGRAMMINGLua

Hook function Called when… Should return… Notes
goto_url_hook(url, current_url) A URL is entered in the A new URL, or nil to cancel

“Go to URL”dialog
follow_url_hook(url) A URL has been selected A new URL, or nil to cancel
pre_format_html_hook(url, html) Document has been Modified string, or nil if no Can remove adverts/junk

downloaded changes were made from badly designed web
pages

lua_console_hook(string) Something is entered into A command (run, eval,
the Lua console (type , goto-url, or nil) followed by
in elinks) an appropriate argument

(the program to run, Lua code
to evaluate, a URL to go to, or
nil, respectively)

quit_hook() elinks is about to exit Nothing For tidying up resources

Table 2: Hooks and Crannies

function goto_url_hook (url,
current_url)
if url == “tiny“ then
return

“http://tinyurl.com/create.php?ur
l=“..current_url
end
return url
end

Listing 2: goto_url_hook

bind_key (“main“, “Ctrl-T“,
function ()
return “goto_url“,

“http://tinyurl.com/create.php?ur
l=“..current_url()
end
)

Listing 3: bind_key function

our code is contained within
functions, nothing should
appear to happen on screen.

The first of our functions
will include the code for
goto_url_hook. As previously
mentioned, this gets called
whenever the user hits ‘g’ to
change web page. It is there-
fore a simple matter to write
Listing 2.

It really is as easy as that!
Reload elinks and visit your
least unfavorite web site.
Then press ‘g’, followed by
the keyword tiny, and
return. If you’re like me and
chose Google as your test
site, you’ll be taken to a web
page at tinyurl.com, as

shown in figure 1.
We can see the new url given as http://

tinyurl.com/161, which can then be
copied, pasted, emailed, and generally
misused. If we knew how to add short-
cuts to elinks we could save ourselves
four keystrokes. Those of you who read
Table 3: Odds and Sods earlier, already
know about the function called bind_
key. Yes! It is the right one, so we can
add the code as in Listing 3.

This example demonstrates the useful-
ness of anonymous functions, and the
ease by which two values can be
returned from a function. In this case,
the command goto_url, and the URL
parameter for that command.

To add some final polish we will eradi-
cate the duplicate URL information by
writing our hooks.lua file as Listing 4.

As you can see, Lua makes it very easy
for the end user to add functionality to a
piece of software. You need nothing
more than the methods provided here,
and a little imagination, to add a whole
host of other functionality. Generally
speaking, adding flexibility for the end
user means complexity for the program-
mer. With Lua, this is not the case! Let’s
look at why…

Moonraker
In any extensible system like this, there
are three basic components. The initial-
ization (and de-initialization), the
communication in (where the script
talks to our C program), and the commu-
nication out (where C talks to the script).

All three areas are very simple, and
can use the basic templates presented
here. This simplicity has kept the Lua
interpreter small, and encouraged pro-
grammers to use it for configuration.

Let us start at the beginning,

#include <lua.h>
int main(int argc, char *argv[])
{
lua_State *pLua;
pLua = lua_open();
printf(“Hello, World!“);
lua_close(pLua);

return 0;
}

given in Table 3: Odds and Sods. We
shall now employ both ideas to create a
simple hook for elinks that creates a tiny
url for the current page.

Moondance
Our first task (to save headaches later) is
to make sure elinks has actually been
compiled with Lua scripting support.
You can check this by opening the About
box by pressing Alt+H (to open the help
menu), followed by the letter A. Here
should be the words,

Scripting (Lua)

This is included by default with most
distros (and downloadable from [4]), if
not, it can be rectified by a simple,

$./configure —with-lua
$ make
make install

This will also create a sample hooks.lua
file in the elinks/contrib/lua directory.

We then need to create a script for
elinks to run when it starts. This is
placed in ~/.elinks/hooks.lua and is run
in its entirety at startup. So provided all

72 August 2004 www.linux-magazine.com

LuaPROGRAMMING

openfile, closefile, readfrom, writeto,
appendto, pipe_read, remove, rename, flush,
seek, tmpname, read, write execute, exit,
clock, date, getenv, setlocale.

Box 1: enable_systems_
functions

function get_tiny(url)
return

“http://tinyurl.com/create.php?ur
l=“..url
end
function goto_url_hook (url,
current_url)
if url == “tiny“ then
return get_tiny(current_url)

end
return url
end
bind_key (“main“, “Ctrl-T“,
function () return “goto_url“,
get_tiny(current_url()) end)

Listing 4: hooks.lua file

Figure 1: The result of our hook function.

int compute(int n) { return
n<2?1:n*compute(n-1); }
int c_factorial(lua_State *pLua)
{
int params = lua_gettop(pLua);
int n, result;
int answers = 0;
for(n=1; n<=params; n++) {
if (lua_isnumber(pLua, n)) {
result = compute(

lua_tonumber(pLua, n));
lua_pushnumber(pLua,

result);
answers++;

} else {
// Error!
break;

}
}
return answers;

}

Listing 5: factorial routine

The first thing to note is that
I’m running Lua 5. This can
lead to minor compatibility
issues, since lua_open takes a
stack size parameter under ver-
sion 4. Version 4 users will note
that the header file must be
changed to lua40/lua.h. These
are two of the backwardly-
incompatible changes made to
version 5. When compiling, we
must link with the Lua library:

$ gcc -llua mycode.c

If you are using Lua on its own,
you will need some form of
input and output. This is not
included as standard, since
most applications provide their
own I/O. To allow Lua code access to its
standard libraries, include the following:

lua_baselibopen(pLua);
lua_iolibopen(pLua);
lua_strlibopen(pLua);
lua_mathlibopen(pLua);

Which libraries you need is, obviously,
up to you. However, including any of
them requires linkage with the lualib
library. Use of the maths library requires
C’s own math library (which is not
included as standard), to make the com-
pile line look more akin to this,

$ gcc -llua -llualib U

-lm mycode.c

pLua holds the state of the
entire Lua system. Since Lua is
re-entrant, we can call lua_open
as many times as we want, and
neither state will conflict with
the other.

This allows us to use Lua as
part of a threaded system.
Whenever interacting with Lua,
we must use this pointer, which
is conventionally labeled L,
although I am using pLua to
increase its visibility in the
examples.

Having got the Lua state, we
can feed Lua code to it, and the
inbuilt interpreter will process it

as normal.

lua_dostring(pLua, U

“number=12345“);
// other code
lua_dostring(pLua, U

“print(number)“);

PROGRAMMINGLua

Function name Purpose
enable_systems_functions() Allows certain functions (e.g. openfile)

to be used. See Box 1.
current_url() Retrieves the URL of the current elinks

page
current_link() Retrieves the link that is currently

selected (or nil if none)
current_title() Retrieves the title from the page
current_document() Retrieves the HTML page, as a string
current_document_formatted([width]) Retrieves the HTML page, formatted to

the optional width
pipe_read(command) Executes the command given and reads

data
execute(command) Executes the command given under a

shell (using sh -c)
bind_key (keymap, keystroke, function) Executes the function whenever the key

stroke is made. Should return a
command and parameter, like
lua_console_hook

Table 3: Odds and Sods

Don’t miss another DVD –
upgrade your subscription today!

For fastest service, use our secure online form:

http://www.linux-magazine.com/Upgrade

You can upgrade your
subscription from Standard
(magazine only) to DVD
(magazine and DVD) at any
time – you’ll start getting
the DVD with the next issue
to be mailed.

To do this, we need to register one of
our C functions with Lua. This ties the
two languages together. We give it the
name that Lua should use, followed by
the name of our actual function in C.

lua_register(pLua, “factorial“,U
c_factorial);

From here, we can get Lua to take over. It
will organize all the function calling,
parameter passing, and the returning of
the results. All we need to do is retrieve
the parameters in the correct order, and
pass the correct result back.

Since Lua supports multiple return
parameters (and arguments of any arbi-
trary type), we can not use any
particular C prototype to manage it.
Instead, all parameters are pushed on
(and pulled off) a stack. We can then
query the stack to tell us how many
items are on it, and what type these
items are. The stack, like variables, can
hold any supported data type. It is there-
fore up to us (as the C programmer) to
correctly request the appropriate type
when removing data from the stack. This
has the added bonus of making sure that
every C function has the same signature,
or prototype, when used with Lua.

If our factorial routine could take an
arbitrary number of integers, and return
the factorial of each one, we’d retrieve
the number of arguments, and compute
the result for each one – provided it was
numeric. Our code would look some-
thing like Listing 5.

Note the stack indices are counted
from 1 (not 0), and that we need to
return the number of parameters that are
pushed on the return stack. That’s all
there is to writing your own functions.
The types may vary, so lua_isnumber
might become lua_isbool (see Table 1),
but the principles are the same.

Clouds across the Moon
Calling a Lua function from C is no more
difficult, once you know the pattern. It
works on the same principle as before
where you push data onto the stack. In
this case we must place the function
name on first, followed by each of the
arguments in order. Since the types vary
between C and Lua, you need to use the
correct function to push the appropriate
type onto the stack. See Listing 6.

This would have the same effect of
Lua calling its own function thus,

result1, result2 = U

swap_greeting(“Steev“, “Hello“);

Note the order of the parameters is
reversed to cope with their removal from
the stack in first in-last out, order.

It we had wanted the results of this
function in the C code, we would read
the data from the stack ourselves, and
then have to explicitly remove it. Like so,

pResult2 = lua_tostringU
(pLua, -1);
pResult1 = lua_tostringU
(pLua, -2);
lua_pop(L, 2);

Notice the reverse order here, too, and
the use of negative stack indices.

Shepherd Moons
As you can see in these few pages, we
have been able to learn the basics of a
new language, upgrade a web browser,
and find a way to supplement our own
projects with dynamic configuration
scripts! This has all been possible
because of the power and flexibility of
Lua. I’m sure you’ll have your own ideas
for projects: perhaps you’ll add the abil-
ity to email pages (or links) directly from
Mutt, or open a secondary browser (for
brain-dead sites that require Mozilla), or
remove adverts from particular web
sites, or… something else… Go on! Have
a play! ■

As long as we keep hold of pLua, any
variables set will remain in the Lua state.
Any time we call a function (like print),
Lua will evaluate it with whatever func-
tions have been declared, and return any
results to the state held in pLua.

You can probably see how easy it
would be to build your own interpreter
and debugger with just this simple func-
tion, and you’d be right! However, such
a function has already been written for
us. It’s called dofile. It executes the code
within the file, as if it were running from
the command line: that is, executing
only those statements that are global.
However, unlike the command line, once
the file has been run, the state remains
in pLua. These variables, along with any
declared functions, can now be accessed
by the C code. Or another Lua file,
loaded with lua_dofile. Or code evalu-
ated with lua_dostring.

int result;
result = lua_dofileU
(pLua, “config.lua“);

In this case result returns the effect of the
last chunk, which depends on whether
the script executed successfully or not.

Moonlight on Vermont
Let us now write something useful in our
config.lua script that calls a function in
our C program. This would act like the
current_url function in elinks, for exam-
ple.

74 August 2004 www.linux-magazine.com

LuaPROGRAMMING

[1] Lua uses: http://www.lua.org/uses.html

[2] Lua documentation: http://www.lua.org/
manual/5.0/

[3] Lua forums: http://archive.neotonic.com/
archive/lua-l

[4] elinks program: http://elinks.or.cz/
download.html

INFO

// The function name is a global
symbol: we must use that instead
of a string containing the
function name
lua_getglobal(pLua,
“swap_greeting“);
// Our first parameter
lua_pushstring(pLua, “Steev“);
// Our second parameter
lua_pushstring(pLua, “Hello“);
// The call itself
lua_call(pLua, 2/*number of input
args*/, 2/*number of result
args*/);
// Retrieve results into Lua-
variables
lua_setglobal(pLua, “result2“);
lua_setglobal(pLua, “result1“);

Listing 6: Calling Lua

When builders go down the pub they
talk about football. Presumably
therefore, when footballers go down
the pub they talk about builders!
When Steven Goodwin goes down
the pub he doesn’t talk about foot-
ball, or builders. He talks about
computers. Constantly…

T
H

E
 A

U
T

H
O

R

